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Abstract

I document that the right tail of the firm size distribution systematically thick-

ens with economic development. To rationalize this fact, I develop a parsimonious

idea search model in which both aggregate growth and the firm size distribution

are endogenously determined. The model features an asymptotic balanced growth

path along which Gibrat’s law holds at each date, and the right tail of the firm

size distribution thickens monotonically toward Zipf’s law. The model also im-

plies that policies favoring large firms can improve welfare by better utilizing the

diffusion externalities arising from idea search.
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1 Introduction

Rich and poor countries differ in many respects, one of which is the size distribution

of business firms. Whereas giant corporations are often viewed as symbols of

economic success, a defining feature of developing economies is the prevalence of

small firms. Understanding how firm size distributions evolve with development

is therefore a central question of economic growth. This paper focuses on one

salient but understudied aspect of this evolution: the right tail of the firm size

distribution.

I contribute to this issue with new evidence, theory, and policy implications.

Empirically, I document that the right tail of the firm size distribution systemati-

cally thickens with economic development. Theoretically, I develop an endogenous

growth model based on idea search that rationalizes this relationship as a feature

of the transition dynamics. The model features an asymptotic balanced growth

path in which Gibrat’s law holds at all times, and the firm size distribution con-

verges to Zipf’s distribution with a progressively thickening right tail. On the

policy side, the model sheds light on how policies favoring large firms can improve

social welfare in the presence of diffusion externalities associated with idea search.

I begin by establishing the empirical relationship between economic develop-

ment and the right tail thickness. My primary datasets are firm size tabulations

from the OECD Structural Business Statistics and the U.S. Census Business Dy-

namics Statistics. I estimate the (Pareto) tail index of the firm size distribution

at the country-year level using methods designed for tabulated data. For OECD

countries, the tail index declines with log GDP per capita within countries over

time. A similar pattern holds for the United States, where the tail index has fallen

steadily over the past four decades. These results indicate that the right tail of

the firm size distribution systematically thickens as an economy grows. Additional

robustness checks confirm that this relationship holds across major sectors, across

countries, over extended time horizons, and within the subset of large firms.

The persistence of this relationship suggests that thickening right tails might

be an intrinsic feature of economic growth. To pursue this idea, I first propose a

novel learning mechanism that explains how firms’ social learning can thicken the

right tail of the productivity distribution. I then embed this mechanism into a

parsimonious growth model and show that the right tail of the firm size distribution

thickens along an asymptotic balanced growth path.

The model economy consists of a unit continuum of firms with heterogeneous

productivity. Firms increase productivity by learning from more productive firms
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via random meetings. Meetings between firms occur as Poisson events: firms

decide on how much to invest in idea search, which determines the arrival rate of

meeting opportunities. When a meeting occurs, firms take a random draw among

all firms that are more productive than they are and update their productivity to

the level of the firm they encounter. Firm-level productivity growth from learning

drives aggregate growth, and the collective search activities of firms continuously

reshape the productivity distribution.

The model possesses a tractable property: if the distribution of firm produc-

tivity is Pareto at time t, it remains Pareto at t+h for h > 0. Assuming a Pareto

initial distribution, I obtain a closed-form characterization for the entire equi-

librium path, which exhibits four key properties. First, the economy features an

asymptotic balanced growth path. Second, Gibrat’s law holds at all times; namely,

average firm growth is independent of firm size. Third, the productivity distribu-

tion remains Pareto with a time-varying tail index k(t), i.e., F (z, t) = 1 − z−k(t)

for productivity z ≥ 1. Fourth, the tail index k(t) decreases toward one over time.

In other words, the productivity distribution develops progressively thicker right

tails and converges to Zipf’s distribution, a Pareto distribution with tail index

equal to one.

Gibrat’s law highlights the key distinction between the learning assumption in

my model and those in existing idea flow models. Earlier models such as Lucas and

Moll (2014) and Perla and Tonetti (2014) assume random sampling, where firms

draw ideas from all firms in the economy and adopt them only if the sampled firm

is more productive. Consequently, more productive (larger) firms are less likely to

encounter superior ideas and exhibit lower expected growth. In contrast, Gibrat’s

law is restored in my model through truncated sampling, whereby firms sample

ideas exclusively from more productive firms. Learning thus remains efficient even

for large firms, as they draw from better sources.

This departure of my model yields three new insights into the relationship be-

tween firm size distributions and economic growth. First, the model uncovers a

novel source of endogenous growth, which I term tail growth: growth sustained

by the thickening of the right tail. In standard firm-based growth models, pro-

ductivity distributions are stationary along the balanced growth path. Therefore,

productivity gains from reallocation dynamics that reshapes the distribution are

purely transitory and do not contribute to the long-run growth. In contrast, learn-

ing through truncated sampling provides a concrete mechanism through which

reallocation gains persist and contribute directly to long-run economic growth.

Second, the model rationalizes rising market concentration as a secular trend.
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Recent evidence by Kwon et al. (2024) suggests that market concentration in

the United States has increased persistently over the past century. This pattern

poses a theoretical challenge, as existing growth models typically feature balanced

growth paths with stationary firm size distributions, making it difficult to reconcile

rising concentration with stable aggregate growth. The present model captures

this pattern through the thickening of the right tail, demonstrating that rising

market concentration can coexist with nearly constant aggregate growth.

Third, the model provides a growth-based theory of Zipf’s law. In the context

of firms, Zipf’s law states that advanced economies exhibit firm size distributions

close to Zipf’s distribution. With tail growth, economic development is driven

by the thickening of the right tail, leading the firm size distribution to converge

toward Zipf’s law. Richer economies are further displaced along the growth path,

so their distributions lie closely to the limit. Moreover, convergence to Zipf’s law

requires only minimal restrictions on model parameters.

Despite its parsimony, the model makes theoretical predictions consistent with

the data. Two predictions about the tail index k(t) are notable: (1) output per

capita y(t) is proportional to k(t)/(k(t) − 1), and (2) k(t) − 1 decreases to 0 at

a constant rate. Both predictions can be readily tested using the estimated tail

indices. For the U.S. from 1978 to 2019, the observed growth in output per capita

closely tracks changes in k(t)/(k(t)− 1). Plotting ln(k(t)− 1) against time t also

reveals a clear linear trend, further confirmed by a high correlation coefficient.

The model also delivers new implications for policies. Individual idea search

generates a diffusion externality since it shapes the future productivity distribution

and thus the efficiency of subsequent learning. Search by large firms dispropor-

tionately thickens the right tail and benefits the entire economy, whereas search

by small firms has limited spillovers. As a result, large firms under-invest in idea

search relative to the social optimum.

Policies that promote idea search among large firms can thus improve welfare.

In particular, restricting search by small firms reallocates resources toward high-

productivity firms and raises the long-run growth rate. Solving the planner’s

problem further reveals that the socially optimal search intensity increases with

firm productivity, in contrast to the uniform search intensity in equilibrium.

Finally, I explore several extensions that relax the simplifying assumptions of

the baseline model. Despite incorporating a richer set of model elements, including

population growth and endogenous firm entry, I demonstrate that the extended

model remains as analytically tractable as the baseline model while preserving

all the major equilibrium properties. Moreover, the extended model confirms
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that scale effects can be absent with tail growth and further generalizes the key

insight from the baseline model that tail growth represents a persistent source of

reallocation gains that contribute directly to long-run growth.

The remainder of the paper is organized as follows. Section 2 presents the em-

pirical evidence. Section 3 develops the simple learning model that illustrates the

mechanism of tail thickening. Section 4 introduces the growth model and char-

acterizes its equilibrium. Section 5 confronts the growth model’s predictions with

data. Section 6 studies the policy implications. Section 7 discusses extensions, and

Section 8 concludes. The supplement, Chen (2025), contains all the appendices.

Related Literature This paper contributes to four strands of literature.

First, it relates to studies on the relationship between economic development

and firm size distributions.1 Most existing work focuses on cross-country compar-

isons of average firm size and attributes the prevalence of small firms in poorer

economies to distortions. Closely related, Poschke (2018) documents that firm size

dispersion increases with economic development and offers an explanation based

on technological change. This paper extends that literature by examining the

right tail of the firm size distribution and developing a microfounded model of

technological progress that drives growth through the thickening of right tail.

Second, it connects to recent research documenting the rise in market concen-

tration in the United States over the past several decades (Gutiérrez and Philip-

pon, 2017; De Loecker et al., 2020; Autor et al., 2020). In particular, Cao et al.

(2022) and Chen et al. (2023) provide both theory and evidence of thickening right

tails in firm size distributions in the U.S. and North America. In their models, the

tail index of the stationary distribution is endogenized through firms’ innovation

decisions and shifts in response to exogenous technological shocks.2 By contrast,

this paper focuses on the transition dynamics of the firm size distribution rather

than steady state comparisons. The model proposed here rationalizes thickening

right tails as an inherent feature of the growth process. Kwon et al. (2024) pro-

vide perhaps the most directly related empirical evidence, showing that the rise

in market concentration in the United States has persisted for roughly a century.

Third, this paper builds upon a burgeoning literature of growth models based

on idea flows. Buera and Lucas (2018) provide a comprehensive overview of this

1Notably, Lucas (1978), Tybout (2000), Alfaro et al. (2008), Hsieh and Olken (2014), Hsieh
and Klenow (2014), Garćıa-Santana and Ramos (2015), and Bento and Restuccia (2017, 2021).

2Relatedly, Oberfield (2018) and Gouin-Bonenfant (2022) develop tractable models of firm
dynamics that explicitly link lower labor shares to thicker right tails.
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literature.3 Following the seminal contribution of Kortum (1997), balanced growth

paths in most existing models arise from the random sampling of ideas from Pareto

distributions and feature stationary productivity distributions. The model devel-

oped here offers an alternative perspective: an asymptotic balanced growth path

can emerge from the truncated sampling of ideas over Pareto distributions, yield-

ing a nonstationary productivity distribution with progressively thickening right

tails. In this setting, Gibrat’s law is also restored. A related exception is Jones

(2023), who shows that the combinatorics of ideas drawn randomly from thin-

tailed distributions can likewise sustain balanced growth.

Fourth, this paper contributes to the theory of Zipf’s law. Gabaix (1999) and

Luttmer (2007, 2011, 2012) establish canonical theories of Zipf’s law based on

individual random growth processes. They derive explicit expressions for the tail

index of the stationary distribution and show that it is close to one under reason-

able calibration. Toda (2017) further explores modeling assumptions that preserve

tail index’s proximity to one for a broad range of parameters. In contrast, this pa-

per interprets Zipf’s law as the limiting case of a nonstationary distribution with

thickening right tails. This perspective links Zipf’s law to the observed thickening

of the right tail over the course of economic development and interprets it as an

outcome of the aggregate growth itself.

2 Stylized Facts

In this section, I present empirical evidence supporting a positive relationship

between the right tail thickness of the firm size distribution and the level of eco-

nomic development. I begin by describing the measure of tail thickness—the tail

index—and the estimation methods. I then document the main relationship us-

ing separate datasets for OECD countries and the United States, and assess the

robustness of the findings across multiple empirical settings. Taken together, the

evidence suggests that the thickening of the right tail of the firm size distribution

is an inherent feature of the process of economic growth.

3An incomplete list goes as follows: Jovanovic and Rob (1989), Kortum (1997), Alvarez et al.
(2008), Lucas and Moll (2014), Perla and Tonetti (2014), Sampson (2016), Buera and Oberfield
(2020), Perla et al. (2021), Akcigit et al. (2018), Benhabib et al. (2021), König et al. (2016), and
König et al. (2022).
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2.1 Measuring the right tail thickness

The literature has established that the right tail of the firm size distribution in

advanced economies follows a power law.4 Let F (x) denote the cumulative distri-

bution function (CDF) of firm size in the economy. Throughout the paper, I use

a tilde to denote the complementary CDF, defined as F̃ (x) ≡ 1− F (x). Then, F̃

is well approximated by the following form for x in the right tail:

Pr(Size > x) ≡ F̃ (x) = cx−k, (1)

where c and k are positive constants. The parameter k, known as the (Pareto)

tail index, summarizes the degree of concentration in the upper tail: a smaller k

implies a thicker right tail.

Standard methods for estimating the tail index k rely on micro-level data on

individual firms.5 In contrast, national statistical agencies typically publish only

tabulated data on the firm size distribution, reporting the number of firms and

total employment within predefined size bins, where firm size is measured by

employment. I therefore propose two complementary estimators of the tail index

that are suitable for use with such tabulated data.

The following notations are useful for defining the tail estimators. Let {Ti}ni=0

denote a sequence of increasing size thresholds that define the size bins in the

tabulated data.6 Based on these thresholds, I construct two measures of top

shares. The top firm share at threshold Ti, denoted Ni, is the proportion of

firms with size at least Ti. Similarly, the top employment share at threshold Ti,

denoted Ei, is the proportion of total employment in firms with size at least Ti.

Since T0 corresponds to the minimum size in the data, N0 = E0 = 1. Finally,

let Ns ≡ (Nn, Nn−1, · · · , Ns) denote the vector of top firm shares for thresholds

above Ts, and define Es analogously for top employment shares.

The first estimator obtains the tail index k by directly inverting the top firm

shares. Consider two thresholds TL > TS from {Ti}ni=0, with corresponding top

firm shares NL < NS. The smaller threshold TS defines the right tail. Under the

4Axtell (2001) famously documents that the size distribution of U.S. firms follows Zipf’s law.
Power-law behavior in the right tail of firm size distribution has also been reported for the U.K.,
France, and Italy (Fujiwara et al., 2004; di Giovanni et al., 2011; Cirillo and Hüsler, 2009).

5Resnick (2007) introduces standard estimators for the tail index. See also Gabaix (2009)
for an overview of tail estimation techniques and their applications in economics.

6For example, in the OECD data, firm size is categorized into four classes based on employ-
ment: 1-9, 10-49, 50-249, and 250 or more employees. Then, {T0, T1, T2, T3} = {1, 10, 50, 250}.
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Pareto assumption in equation (1), Nx = cT−k
x , the tail index can be recovered as

kf = − ln
NL

NS

/
ln
TL
TS
.

I refer to kf as the firm-based simple estimator, or simply the simple estimator,

as it requires only two top firm shares.7

The second estimator adopts the efficient minimum distance estimator devel-

oped by Toda and Wang (2021) for estimating the tail index from top shares.

Appendix A.1 provides full details. Let TR denote the threshold defining the right

tail. I first construct the data moments from all top employment shares in the

right tail, ER, forming a vector of normalized top employment shares s̄(ER). I

then construct the corresponding model moments r(k;NR), implied by a Pareto

distribution with tail index k and top firm shares NR. The Toda-Wang estimator

kTW minimizes the distance between the two:

kTW = argmin
k>1

(r(k;NR)− s̄(ER))
TΩ(k;NR)

−1(r(k;NR)− s̄(ER)),

where Ω is the optimal weighting matrix that achieves efficiency. The restriction

k > 1 is required for the model moments r(k;NR) to be well defined.

The two estimators entail a trade-off between robustness and efficiency. The

Toda-Wang estimator kTW is more efficient, as it exploits all top firm and employ-

ment shares in the right tail. However, because Zipf’s law implies that k is close

to one, the constraint k > 1 introduces numerical corner cases when applying the

estimator to firm size distributions.8 By contrast, the simple estimator kf imposes

no such restriction, though it is less efficient since it relies on only two top firm

shares. I therefore report all empirical results based on both estimators.

2.2 Main results

I examine the relationship between the tail index of firm size distributions and

the level of economic development across OECD countries and the United States.

Details on the data and estimation results are provided in Appendix A.2.

7In Appendix A.1, I show how to invert the top employment shares to obtain an employment-
based simple estimator, kemp. Appendix A.4 verifies that all results extend to kemp and provides
evidence that kf is the preferred simple estimator.

8Toda and Wang (2021) impose a lower bound of k = 1.001 in estimation. In practice, I
exclude kTW estimates between 1.001 and 1.0012 to mitigate attention bias in the regression
results, which substantially reduces the sample size.

7



2.2.1 The OECD countries

The OECD Structural Business Statistics (SBS) database provides harmonized

information on the industrial composition of OECD economies. The sample covers

a panel of 33 countries observed from 2008 to 2017. For each economy, the SBS

reports the number of firms and total employment by sector and firm size class.

Firm size is categorized into four classes based on employment: 1-9, 10-49, 50-249,

and 250 or more employees.

I set the threshold of 10 employees to define the right tail, capturing approx-

imately the top 10% of firms in a typical OECD economy.9 Consequently, I set

TR = 10 for the Toda-Wang estimator and TS = 10 for the simple estimator. For

the latter, I choose TL = 250 to align with the OECD’s definition of large firms.

Using these thresholds, I obtain tail indices kfc,t and kTWc,t for each country-year

pair (c, t), estimated using the simple and Toda-Wang estimators, respectively.

I complement these with data on log real GDP per capita, logGDPpcc,t, from

the Penn World Table (PWT) version 10.0, and investigate the relationship be-

tween the tail index and log GDP per capita through the following regression:

kic,t = αi + βilogGDPpcc,t + γic + εic,t, for i ∈ {f, TW}, (2)

where γic denotes country fixed effects that control for cross-country differences.

Thus, the identification of βi relies solely on within-country over-time variations.

Figure 1 summarizes the main regression results in three layers. First, each gray

dot represents a (logGDPpcc,t, k̂
i
c,t) pair, where k̂

i
c,t = kic,t−γic+ γ̄i and γ̄i ≡

∑Nc
c=1 γ

i
c

Nc

denotes the mean of the country fixed effects. This scatter plot illustrates that,

net of cross-country differences, there is a negative over-time relationship between

the tail index and log GDP per capita. Second, the slopes of the fitted lines

correspond to the estimated coefficients β̂f and β̂TW , both of which are negative.

Third, I annotate specific points to illustrate the trajectories of the tail index across

development stages for selected countries. The annotated series for Lithuania, the

U.K., and the U.S. highlight examples of countries at different stages of economic

development. Table A.1 reports the full regression results.

In summary, among OECD countries, the right tail of the firm size distribution

systematically thickens as economies grow. This finding suggests that explanations

9Across all country-year pairs in the sample, the median share of firms with fewer than 10
employees is 91.6%. Only three countries have fewer than 80% of firms below this threshold:
the U.S. (79.2%), Switzerland (68.1%), and New Zealand (79.5%). Moreover, 10 is the only
threshold that meets the minimum requirement of the Toda-Wang estimator, which requires at
least three size thresholds (excluding the minimum size) for estimation (10, 50, and 250).
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Figure 1: Tail index and log GDP per capita in OECD countries

Notes. This figure plots the tail index k against log GDP per capita for a panel of OECD
countries. The scatter points are adjusted for country fixed effects, and the red lines represent
fitted linear trends. The estimated slopes are β̂f = −0.077(0.015) and β̂TW = −0.061(0.018).
The left panel reports results using the simple estimator kf with TS = 10 and TL = 250,
while the right panel reports results using the Toda-Wang estimator kTW with TR = 10. Log
GDP per capita is measured in constant international dollars. The three annotated countries are
Lithuania (LTU, purple), the United Kingdom (GBR, green), and the United States (USA, blue).
See Table A.1 for the complete regression results. Data sources: OECD SBS and PWT 10.0.

based solely on cross-country differences in exogenous factors are insufficient to

account for the observed thickening of the right tail with economic development.

2.2.2 The United States

The Business Dynamics Statistics (BDS) from the U.S. Census Bureau provide

detailed data on the distribution of firm sizes in the United States over the past

four decades (1978-2019). In the BDS, all U.S. business firms are grouped into

ten size classes based on employment: 1-4, 5-9, 10-19, 20-99, 100-499, 500-999,

1,000-2,499, 2,500-4,999, 5,000-9,999, and 10,000 or more employees. The dataset

reports, for each size class, both the number of firms and total employment.

To ensure comparability with the OECD analysis, I set the right tail threshold

at 20 employees to capture roughly the top 10% of firms in the United States.

Accordingly, TR = 20 for the Toda-Wang estimator and TS = 20 for the simple

estimator. For the latter, I set TL = 500 to maintain the same ratio TL/TS as in

the previous analysis.10

10The thresholds 20, 500, and 1,000 correspond to approximately the top 11.4%, 0.4%, and
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Unlike the OECD analysis, I plot the estimated tail indices kf and kTW against

calendar years rather than log GDP per capita. Since the United States represents

an archetypal growing economy, the time-series perspective provides a more direct

depiction of how the tail index evolves with economic development.

Figure 2: Tail index in the US (1978-2019)

Notes. This figure plots the tail index k of the U.S. firm size distribution from 1978 to 2019.
The tail indices are estimated using either the Toda-Wang estimator, kTW , with TR = 20 (in
blue), or the simple estimator, kf , with TS = 20 and TL = 500 (in red). Data source: the U.S.
Census BDS.

Figure 2 shows a clear declining trend in the tail index of the U.S. firm size

distribution between 1978 and 2019. This thickening of the right tail is consistent

with recent evidence from Autor et al. (2020) and Kwon et al. (2024), who docu-

ment rising product market concentration in the U.S. over the past four decades.

2.3 Additional evidence

Evidence from OECD countries and the United States indicates that the right

tail of the firm size distribution grows thicker with economic development. In

this section, I provide additional evidence showing that this relationship between

tail thickness and development remains robust across sectors, countries, time pe-

0.2% of U.S. firms, respectively. In the OECD sample, TL = 250 captures the top 0.2% of firms
in a typical economy. Thus, TL = 1, 000 in the BDS case provides a percentile-aligned alternative
to TL = 250 in the OECD analysis. The BDS’s granularity also allows for a sensitivity analysis
of the simple estimator to threshold choices. Figure A.1 plots the time series of kf estimates
based on TS = 5, 10, 20 and TL = 500, 1, 000, showing qualitatively similar trends across all
specifications.
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riods, and among large firms. Details of these robustness analyses are provided in

Appendix A.3.

First, Table A.2 shows that the negative relationship between the tail index

and log GDP per capita holds within both manufacturing and service sectors in the

OECD data. These results help address the concern that the observed thickening

of the aggregate right tail might be a compositional effect driven by structural

transformation across sectors. Moreover, the thickening of the right tail within

the service sector suggests that the mechanism is not solely tied to international

trade, as it extends to less-tradable sectors as well.

Second, I show that this negative relationship also holds in the cross-section:

richer countries tend to exhibit thicker right tails in their firm size distributions.

For OECD economies, Table A.1 shows that both β̂f and β̂TW in regression (2)

remain negative even when country fixed effects are excluded. Beyond the OECD,

the World Bank Enterprise Survey (WBES) provides harmonized information on

business environments across a wide range of developing economies. In particular,

the Employment Indicators of the WBES report the World Bank’s estimates of

employment shares by firm size (number of employees) for each country. Using this

dataset, I estimate the tail index for more than 130 countries surveyed between

2006 and 2019. Figure A.2 and Table A.3 confirm that the tail index remains

negatively correlated with log GDP per capita in this broader global sample.

Third, I present historical evidence suggesting that the thickening of the right

tail in the U.S. firm size distribution may date back a century. Kwon et al. (2024)

study corporate concentration in the U.S. using historical IRS corporate income

data and compile annual firm size distributions from 1918 to 2018, measuring

firm size by assets, receipts, and net income. Using their dataset, I estimate the

historical tail index of U.S. firms in Figure A.3 and confirm that the thickening of

the right tail is a persistent, long-term feature of U.S. economic growth.

Fourth, I draw on firm-level evidence from the literature showing that the

thickening right tail also holds among the largest firms. Cao et al. (2022) estimate

the tail index for the top 1% of U.S. firms (by employment) using confidential

Census data and find that the index declined from 1.17 in 1995 to 0.99 in 2014.

Similarly, using Compustat data, Chen et al. (2023) document a decreasing trend

in the tail index of the largest publicly listed firms (by revenue) in North America

over 1970-2019. These findings alleviate the concern that aggregate statistics

might fail to capture changes among the largest firms.

In conclusion, the evidence presented in this section shows that the thickening

of the right tail of the firm size distribution is a pervasive feature of economic devel-

11



opment. This suggests that the underlying mechanism driving this phenomenon is

generic to the growth process itself. The next section develops such a mechanism.

3 A simple model of thickening right tails

In this section, I develop a productivity process, driven by firms’ social learning,

that generates a progressively thicker right tail of the productivity distribution.

This process serves as a building block for the growth model in the next section.

Consider an economy with a unit continuum of firms indexed by productivity

z ∈ R+. Let F (z, t) and f(z, t) denote the CDF and PDF of productivity at time

t. Productivity evolves through meetings: firms encounter more productive firms

and adopt their technology. Meetings occur as Poisson events with an exogenous

rate η(t) > 0, which is now common to all firms. In the growth model, I will allow

firms to choose their own meeting rates. Conditional on a meeting, firm x samples

only from firms with productivity z′ > x and adopts z′. I refer to this assumption

as truncated sampling, since the sampling distribution for firm x is the truncated

distribution F (z|z ≥ x, t).11 I provide a detailed discussion of this assumption at

the end of this section.

With truncated sampling, the probability that firm x meets a firm with pro-

ductivity at least z > x between t and t+ dt is

1− F (z, t)

1− F (x, t)
η(t)dt.

The fraction of firms above z then evolves as

1− F (z, t+ dt) = 1− F (z, t) +

∫ z

0

1− F (z, t)

1− F (x, t)
η(t)dt f(x, t)dx.

That is, firms above z at t+dt are either those already above z at t or those that

were below z but met firms above z during [t, t + dt]. Letting dt → 0, the law of

motion for F (z, t) is

∂F (z, t)

∂t
= −η(t) [1− F (z, t)]

∫ z

0

f(x, t)

1− F (x, t)
dx. (3)

11I thank an anonymous referee for suggesting this terminology.

12



Since F (0, t) = 0, this simplifies to

∂ ln (1− F (z, t))

∂t
= −η(t)

∫ z

0

∂ ln (1− F (x, t))

∂x
dx = −η(t) ln (1− F (z, t)) .

I then obtain a linear ODE in t for variable ln (1− F (z, t)), which admits the

following solution given initial condition F (z, 0):

ln (1− F (z, t)) = ln (1− F (z, 0)) exp

(
−
∫ t

0

η(s)ds

)
. (4)

Equation (4) fully characterizes the productivity distribution under truncated

sampling. To illustrate the evolution of the right tail, I impose the following

assumption that the initial productivity distribution is Pareto with a finite mean.12

Assumption 1. The initial productivity distribution satisfies that

F (z, 0) = 1− z−k0 for z ≥ 1, where k0 > 1. (5)

With Assumption 1, Equation (4) implies that for z ≥ 1,

F (z, t) = 1− z−k(t), where k(t) = k0 exp

(
−
∫ t

0

η(s)ds

)
. (6)

Thus the distribution remains Pareto, with a declining tail index k(t). In words,

the right tail of the productivity distribution is getting thicker over time. Equa-

tion (6) further indicates that the tail index k(t) decreases at the following rate:

− k̇(t)
k(t)

= η(t) > 0. (7)

The meeting rate η(t) thus governs the thickening speed of the right tail: higher

meeting rates imply faster reallocation into the right tail and greater concentration

at the top.

What are the economic determinants of η(t), and how might it change over de-

velopment stages? Answering these questions is one primary goal of the following

growth model.

12It is worth noting that the characterization of the tail index k(t) in (6) does not depend
on the Pareto assumption. In Appendix B.1, I show that Equation (6) extends to settings with
general initial distributions and external learning. In those more general environment, the right
tail of the productivity distribution may still thicken over time when the initial distribution is
thin-tailed or has bounded support.
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3.1 Discussions on the learning assumption

The property of thickening right tails in this model hinges critically on the trun-

cated sampling assumption. In contrast, most existing idea flow models assume

random sampling, where a firm with productivity x samples from all firms z′ in the

economy and adopts the idea if z′ > x. I conclude this section by discussing the

plausibility of truncated sampling in relation to Gibrat’s law, empirical evidence,

and possible microfoundations.

First, truncated sampling helps restore Gibrat’s law in idea flow models where

firm growth is driven by social learning. As one of the most well-known empiri-

cal regularities on firm dynamics, Gibrat’s law states that firm growth rates are

independent of firm size. Under random sampling, the efficiency of social learn-

ing declines with firm productivity: since all firms search within the same pool

of ideas, more productive (larger) firms are less likely to encounter superior ones

and therefore exhibit lower expected growth. By contrast, truncated sampling

allows more productive firms to continue learning efficiently by drawing from a

higher-quality subset of ideas. In the growth model developed below, I show that

firms share the same equilibrium expected growth rate regardless of productivity,

namely, Gibrat’s law holds under truncated sampling.13

Next, recent studies on firms’ technology adoption present evidence in favor of

the truncated sampling assumption. A key implication of random sampling is fre-

quent “leapfrogging”, whereby low-productivity firms adopt frontier technologies

as often as others. Truncated sampling instead predicts gradual upgrading, with

high-productivity firms more likely to adopt frontier technologies. Cirera et al.

(2022) carefully examine firm-level technology adoption decisions using compre-

hensive data from the Firm-level Adoption of Technology (FAT) survey. Consis-

tent with the implications of truncated sampling, they find that leapfrogging is

rare, and the probability of adopting frontier technologies increases with firm size.

Finally, several mechanisms help explain why firms’ learning is directed up-

ward rather than entirely random. First, the spatial distribution of firms implies

that knowledge diffusion is inherently directed. A large literature documents that

knowledge flows are highly localized (Baum-Snow et al., 2024) and that firms are

spatially sorted by productivity across cities (Combes et al., 2012). Consequently,

13Truncated sampling is not merely a sufficient condition for Gibrat’s law or for thickening
right tails. In the working paper Chen (2023), I show that within a broad class of idea flow
models, Gibrat’s law holds if and only if the right tail of the firm size distribution thickens.
With additional structural assumptions, truncated sampling emerges as the only functional form
consistent with both Gibrat’s law and thickening right tails.
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the set of potential learning partners depends on firms’ productivity levels, consis-

tent with truncated sampling. Second, firms may identify more productive peers

through observable signals—such as market shares or patent records—and target

them strategically. An analogous example in academia reflects similar directions

of knowledge exchange: seminar organizers typically invite speakers from higher-

ranked institutions.

4 A growth model of thickening right tails

This section develops a parsimonious growth model that embeds the firm pro-

ductivity process described above. In the model, firms endogenously choose their

meeting rates, which in turn thicken the right tail of the productivity distribution

while sustaining asymptotically balanced growth. The analysis proceeds in three

steps. I first describe the economic environment, then characterize the equilibrium,

and finally discuss the model’s key properties.

4.1 The environment

As before, I consider a continuous-time economy with a unit continuum of firms.

The notation for firm productivity follows that introduced in Section 3.

Firms I make several simplifying assumptions to isolate the growth mechanism

driven by firms’ active social learning. First, there is no firm entry or exit, so the

total measure of firms is constant and normalized to one. Second, firms produce

a homogeneous final good and compete under perfect competition. Third, firms

make no input decisions. Each firm is a fixed unit of capital that produces final

goods in proportion to its productivity: firm z produces z final goods per unit of

time. The final good serves as the numeraire.14

The firm’s only decision concerns improving productivity through social learn-

ing. Learning follows the truncated sampling process described earlier, except that

the arrival rate of meetings is now determined endogenously by the firm’s research

effort. Firms choose their own meeting rates by hiring researchers. To distinguish

from the passive learning case in the previous section, I refer to this mechanism

14In the absence of production labor, firm size is measured by firm revenue. In this case, the
productivity distribution is isomorphic to the firm size distribution, since productivity equals
firm revenue (output). In Section 7, I introduce production labor and show that employment
is proportional to firm revenue. Consequently, the firm size distribution—whether measured by
employment or revenue—remains isomorphic to a transformed productivity distribution.
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as idea search, and the firm-specific meeting rate as search intensity. Following

Atkeson and Burstein (2010), I assume that the search cost scales with firm sales:

it takes zη researchers for a firm with productivity z to achieve a meeting rate

η. This scaling neutralizes the effect of firm size on idea search decisions, thereby

preserving Gibrat’s law in equilibrium.15

Let w(t) denote the wage of researchers and r(t) the interest rate. Taking these

as given, firms optimally choose search intensities to maximize their present value.

Let v(z, t) denote the value of a firm with productivity z at time t. It satisfies the

following Hamilton-Jacobi-Bellman (HJB) equation:

r(t)v(z, t) = z +max
η≥0

η

{∫ ∞

z
[v(x, t)− v(z, t)]dF (x|x ≥ z, t)− zw(t)

}
+ ∂tv(z, t). (8)

Let η(z, t) denote the optimal search policy. Equation (8) states that the flow

value of the firm (LHS) equals the sum of three components (RHS): the flow profit,

the expected gains from learning net of the total search cost, and the option value

associated with changes in the aggregate state.

Households There is a fixed continuum of infinitely lived representative house-

holds with measure L. Each household inelastically supplies one unit of labor,

which is employed as a researcher. In the absence of population growth, aggregate

labor supply remains constant at L. Households own the firms, so the flow income

of each household is given by the output per capita y(t). Taking the interest rate

r(t) and income y(t) as given, households choose consumption c(t) to maximize

the present value of their CRRA utility subject to a lifetime budget constraint:

max
c(τ)≥0

∫ ∞

t

e−ρ(τ−t)
c(τ)1−θ − 1

1− θ
dτ.

s.t.

∫ ∞

t

e−
∫ s
t r(τ)dτc(s)ds ≤

∫ ∞

t

e−
∫ s
t r(τ)dτy(s)ds.

(9)

Market clearing The market for the final good clears when total household

consumption equals total output across firms Y (t):

Lc(t) = Y (t) =

∫ ∞

0

zf(z, t)dz. (10)

15The assumption that innovation cost scales with firm size is standard in firm-based innova-
tion models such as Klette and Kortum (2004), Atkeson and Burstein (2010), and Peters (2020).
In these frameworks, the scaling factor ensures that endogenous R&D intensity is independent
of firm size, thereby preserving Gibrat’s law. In the context of idea search, I provide a micro-
foundation for this assumption based on firms’ choice of search technologies in Appendix B.2.
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Similarly, the labor market for researchers clears when the total labor demand of

firms equals the fixed aggregate labor supply:∫ ∞

0

zη(z, t)f(z, t)dz = L. (11)

Law of motion of the aggregate state The distribution of firm productivity

summarizes the aggregate state of the economy. Given the search policy η(z, t), the

same derivation as in Section 3 yields the following Kolmogorov Forward Equation

(KFE) for the productivity distribution F (z, t):

∂F (z, t)

∂t
= − [1− F (z, t)]

∫ z

0

η(x, t)
f(x, t)

1− F (x, t)
dx. (12)

The initial distribution F (z, 0) follows Assumption 1, with F (z, 0) = 1− z−k0 for

z ≥ 1 and k0 > 1. This assumption allows for a closed-form characterization of

the full transition dynamics and ensures finite aggregate output at all times.

Equilibrium I conclude the description of the growth model by defining an

equilibrium and an asymptotic balanced growth path (BGP). While an exact

BGP requires that output per capita grows at a constant rate at all times, an

asymptotic BGP only requires that this growth rate converges to a constant in

the limit.

Definition (Equilibrium). A competitive equilibrium for this economy consists

of researchers’ wages w(t), interest rates r(t), firms’ value functions v(z, t), firms’

search intensity η(z, t), households’ income y(t) and consumption c(t), and the

productivity distribution F (z, t) that satisfy the following:

(i) Given {w(t), r(t), F (z, t)}, v(z, t) solves the HJB equation (8), and η(z, t) is

the associated policy function;

(ii) Given {y(t), r(t)}, c(t) solves the households’ problem (9);

(iii) Both goods and labor markets clear, i.e., (10) and (11) are satisfied;

(iv) F (z, t) solves the KFE (12) given η(z, t) and the initial condition (5).

Definition (BGP). An asymptotic balanced growth path (BGP) is an equilibrium

in which output per capita growth converges to a constant g > 0, i.e.,

lim
t→∞

ẏ(t)

y(t)
= g > 0.
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4.2 Solving the equilibrium

In this section, I guess and verify a model equilibrium in which all firms choose

the same search intensity, and the productivity distribution evolves identically to

that in the simple model in Section 3. In particular, there exist an interest rate

r(t) and a researcher wage w(t) that support such an equilibrium.

Suppose, as in the simple model, that the meeting rate is common across

firms at all times, i.e., η(z, t) = η(t) > 0 for all z and t. With a Pareto initial

productivity distribution as in (5), the resulting productivity distribution F (z, t)

follows directly from Equations (6) and (7) in Section 3:

F (z, t) = 1− z−k(t) for z ≥ 1, (13)

in which k(t) satisfies

k̇(t)

k(t)
= −η(t) < 0, (14)

and k(0) = k0.

Since the productivity distribution remains Pareto at all times, the tail index

k(t) serves as a sufficient statistic for the aggregate state, and its evolution fully

characterizes the transition dynamics of the economy. Using the expression for

F (z, t) in (13), the labor market clearing condition (11) can be rewritten as

η(t)
k(t)

k(t)− 1
= L.

Substituting η(t) from (14) into the above equation yields a first-order linear or-

dinary differential equation (ODE) for k(t):

− k̇(t)

k(t)− 1
= L, (15)

which admits the solution, given k(0) = k0 > 1,

k(t) = 1 + (k0 − 1)e−Lt. (16)

The associated equilibrium search intensity is therefore

η(z, t) = η(t) = L
k(t)− 1

k(t)
=

L

eLt/(k0 − 1) + 1
. (17)

It follows that k(t) declines monotonically toward one, while η(t) converges to

18



zero over time. The convergence of k(t) to unity is intuitive from the labor market

clearing condition: the thickening of the tail ceases once k(t)/(k(t) − 1) diverges

to infinity and the search intensity η(t) falls to zero.

Given the equilibrium path of k(t), it is straightforward to characterize the

dynamics of output per capita and the corresponding interest rate. With the

productivity distribution F (z, t) given in (13), aggregate output satisfies Y (t) =

k(t)/(k(t)− 1). Hence, output per capita y(t) is given by

y(t) =
1

L

k(t)

k(t)− 1
=

1

L

[
eLt

k0 − 1
+ 1

]
(18)

The corresponding output per capita growth rate, g(t) ≡ ẏ(t)/y(t), is

g(t) =
1

k(t)

(
− k̇(t)

k(t)− 1

)
=

L

1 + (k0 − 1)e−Lt
. (19)

Thus, the equilibrium features an asymptotic balanced growth path in which g(t)

converges to L. From the goods market clearing condition (10), consumption

growth equals output per capita growth. The household Euler equation then

implies the equilibrium interest rate:

r(t) = θ
ċ(t)

c(t)
+ ρ = θg(t) + ρ, (20)

which converges to θL + ρ as t → ∞. I further impose the parametric condition

ρ > (1− θ)L to ensure that the representative household’s utility is finite and the

transversality condition is satisfied.

I then show that there exists a researcher wage w(t) under which it is optimal

for all firms to choose the same search intensity. Let S(z, t) denote the net payoff

per idea search for firm z at time t. From the HJB equation (8),

S(z, t) =

∫ ∞

z

[v(x, t)− v(z, t)]dF (x|x ≥ z, t)− zw(t). (21)

In what follows, I first characterize the firm value function v(z, t) and then identify

w(t) such that S(z, t) = 0 for all z and t, ensuring the optimality of search policy.

To solve for v(z, t), note that the total search payoff ηS(z, t) is linear in η, and

since η ≥ 0, the equilibrium condition η(z, t)S(z, t) = 0 must hold. Substituting
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this condition into the HJB equation (8) yields

r(t)ṽ(z, t) = 1 + ∂tṽ(z, t),

where ṽ(z, t) ≡ v(z, t)/z. Integrating forward over time, ṽ(z, t) is independent of

z and equals the present value of a flow of unit output:

v(t) ≡ ṽ(z, t) =

∫ ∞

t

e−
∫ x
t r(s)dsdx. (22)

Given convergence of r(t), v(t) is finite, and v(z, t) = v(t)z is then well-defined.

Finally, let the researcher wage be w(t) = v(t)/(k(t)−1), which is well-defined

since k(t) > 1 by (16). Substituting v(z, t), F (z, t), and w(t) into (21) gives

S(z, t) = z

[
v(t)

k(t)− 1
− w(t)

]
= 0.

Hence, the uniform search policy η(z, t) = η(t) > 0 is optimal, and all equilibrium

variables are solved with explicit solutions. The following proposition summarizes

the key characterization of this equilibrium.16

Proposition 1. With Assumption 1 and ρ > (1− θ)L, there exists an equilibrium

in which (1) the search intensity is uniform across firms, η(z, t) = η(t) > 0, and

(2) the productivity distribution F (z, t) remains Pareto, with only its tail index

k(t) declining over time at rate −k̇(t)/k(t) = η(t) > 0.

Remarks on equilibrium selection The assumption that idea search costs

are linear in η is a convenient simplification that allows for an explicit charac-

terization of the equilibrium. However, it also implies that η(z, t) = η(t) is not

the firm’s unique optimal choice, and alternative equilibria may therefore exist

(Section 6.1). In Appendix B.4, I relax this linearity assumption by introducing

a non-linear adjustment cost in η. I show that the resulting equilibrium not only

yields unique firm-level optimal search intensities but also preserves the charac-

terization in Proposition 1. Moreover, I demonstrate that the equilibrium in this

section is the limiting case of those with non-linear search costs, which justifies its

selection as the preferred benchmark.

16In Appendix B.3, I further characterize the equilibrium dynamics of prices, w(t) and r(t),
and show that the researcher wage w(t) rises relative to household income y(t) over time. In
other words, the share of R&D expenditure in GDP increases along the transition path.
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4.3 Discussions

With the equilibrium fully characterized, I now discuss the model’s main properties

and their connection to empirical regularities. Specifically, the model accounts for

four salient facts about firm dynamics and economic growth: the thickening of the

right tail of the firm size distribution, Gibrat’s law, Zipf’s law, and the existence

of a balanced growth path. The first feature represents the key empirical finding

of this paper, while the latter three are well-established in the literature.

Thickening right tails The expressions for k(t) and y(t) in (16) and (18) show

that the right tail of the productivity distribution thickens as the economy grows.

Consistent with the empirical evidence presented in Section 2, the model gener-

ates the negative relationship between the tail index and output per capita as an

equilibrium feature of the growth process. This relationship arises naturally from

firms’ learning through truncated sampling, which drives growth by increasing the

share of high-productivity firms.

Gibrat’s law The model implies that firms have the same expected productivity

growth rates, i.e., Gibrat’s law holds at all times. To see this, note that a firm’s

expected productivity growth equals the product of its search intensity and the

expected productivity gain per search. Since all firms choose the same search

intensity in equilibrium, it suffices to show that the expected productivity gain in

each meeting is identical across firms.

Let z′ denote the productivity of the other firm in a meeting, and let F̂ (z′; z, t)

be the CDF of z′ in meetings facing firm z at t. Given the Pareto productivity dis-

tribution F (z, t) in (13), truncated sampling implies that F̂ (·; z, t) is also Pareto,

with F̂ (z′; z, t) = 1− (z′/z)−k(t) for z′ ≥ z. Let ẑ denote the productivity growth

ratio z′/z. Its distribution in meetings facing firm z at t is then

Prob(ẑ ≤ x; z, t) = F̂ (zx; z, t) = 1− x−k(t) = F (x, t),

for x ≥ 1. Hence, all firms face the same distribution of productivity growth

ratio ẑ in each meeting. The expected productivity growth per search is therefore

identical across firms and equals k(t)/(k(t) − 1). This result indicates that trun-

cated sampling over a Pareto distribution may be viewed as a microfoundation

to the standard assumption in quality-ladder models that the step size of quality

improvement is independent of current quality.

Finally, let λ(z, t) denote the expected productivity growth rate of firm z at
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time t, i.e., λ(z, t) = E[dz|z, t]/z. Given η(z, t) = η(t) in equilibrium, λ(z, t) equals

the aggregate output per capita growth rate g(t):

λ(z, t) = η(z, t) (E[ẑ|z, t]− 1) =
η(t)

k(t)− 1
= g(t),

where the last equality follows from (16), (17), and (19).

Interestingly, while the existing literature often emphasizes that Gibrat’s law

implies a power law (Gabaix, 2009), this model suggests that the reverse may

also hold. Under truncated sampling, the Pareto distribution ensures that idea

search efficiency is identical across firms, allowing them to choose the same search

intensity and thus satisfy Gibrat’s law in equilibrium.

Zipf’s law As k(t) converges to 1 by (16), the equilibrium productivity distri-

bution converges to Zipf’s distribution, a Pareto distribution with tail index 1. In

the context of firms, Zipf’s law states that advanced economies such as the U.S.

exhibit firm size distributions very close to Zipf’s distribution.17 This model thus

provides a growth-based theory for Zipf’s law in firm size distributions. Firms’

learning through truncated sampling generates aggregate productivity growth by

progressively thickening the right tail of the productivity distribution. Richer

economies are further along this growth path, and their distributions lie closer to

the limit, which is Zipf’s distribution. The convergence to Zipf’s law requires min-

imal restrictions on model parameters, helping explain its empirical prevalence.

Asymptotic balanced growth path The expression for g(t) in (19) indicates

that the equilibrium constitutes an asymptotic balanced growth path, with the

long-run growth rate equal to the population size L.18 Two features distinguish

this model from standard firm-based growth frameworks, where balanced growth

paths correspond to traveling wave equilibria with stationary (scaled) productivity

distributions.

First, the model provides an explicit example in which product market con-

centration rises along an (asymptotic) balanced growth path. Existing firm-based

growth models typically feature balanced growth paths where market concentra-

tion remains constant with stationary productivity distributions. However, recent

17More generally, Zipf’s law is a pervasive empirical regularity observed across the natural
and social sciences. If X denotes the variable of interest, Zipf’s law states that P (X > x) ≈ 1/x.

18With a fixed population and measure of firms, the model features scale effects in the growth
rate. In Section 7, I extend the model to incorporate both population growth and firm entry.
Scale effects vanish in the extended model, since the measure of firms grows at the same rate as
the population in the long-run equilibrium.
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evidence by Kwon et al. (2024) shows that market concentration has been increas-

ing in the U.S.—an economy characterized by a stable long-term growth rate—over

the past century. The present model captures this pattern through the thickening

of the right tail of the productivity distribution, demonstrating that rising market

concentration can coexist with nearly constant aggregate growth.

Second, the model uncovers a novel source of endogenous growth. Standard

frameworks regard balanced growth paths with stationary productivity distribu-

tions as the long-run equilibrium. In other words, reallocation dynamics that alter

the shape of the productivity distribution do not contribute to long-run growth.

In contrast, growth in this model is driven exclusively by firms’ learning, which

continuously thickens the right tail and generates persistent reallocation gains in

aggregate productivity. Constant output growth implies that Zipf’s distribution

is the natural limiting case of the productivity distribution, as it has the thinnest

possible tail consistent with an infinite mean. Otherwise, growth would cease as

output converges to the finite mean of the limiting distribution.19

To conclude, firms’ learning through truncated sampling not only generates

thickening right tails of the productivity distribution along an asymptotic balanced

growth path but also serves as an important driver of long-run economic growth.

I refer to this mechanism as tail growth.

5 Testing the model predictions

Despite its parsimony, the model in Section 4 yields empirically testable predic-

tions. In particular, it implies two sharp theoretical relationships: 1) output per

capita y is proportional to k/(k − 1), and 2) k − 1 decreases to 0 at a constant

rate over time t.

In this section, I test both predictions using U.S. data, which provide the

longest available time series for the tail index. It is important to emphasize that,

while the tail estimates play a crucial role in assessing the model’s quantitative

implications, their estimation is entirely independent of the model itself. Disci-

plining the choice of tail estimator is therefore essential to ensure a meaningful

data-model comparison.

To this end, I use the Toda-Wang estimator kTW for the tail index. Comparing

to the simple estimator, the Toda-Wang estimator is much more efficient because it

19Constant growth is only a sufficient condition for convergence to Zipf’s distribution; con-
vergence may still occur under declining growth. In the working paper verision, Chen (2023)
provides a detailed characterization of the relationship between Zipf’s law and growth rates.
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exploits all available information on firm and employment shares in the right tail.

In this sense, kTW represents a better “calibrated” model in terms of matching the

right tail of the firm size distribution. In the following exercises, I compare model-

based transformations of kTW with either output per capita or time, and report

the corresponding correlation coefficients to quantify the alignment between the

model predictions and the data.20

(a) y vs. k/(k − 1) (b) ln(k − 1) vs. t

Figure 3: Testing the model predictions

Notes. This figure confronts two model predictions using tail estimates kTW in the U.S. from
1978 to 2019. The left panel compares the relationship between y and yTW ≡ kTW /(kTW − 1).
Both data series are in levels and normalized with respect to their 1978 level. y is given by the
real U.S. GDP per capita from FRED. The right panel compares the time series ln

(
kTW
t − 1

)
with its associated linear trend. Both the linear trend and R2 are obtained from the regression
ln
(
kTW
t − 1

)
= −2.24− 0.019t. Source: the U.S. Census BDS and FRED.

y vs. k/(k − 1) The model yields a simple relationship between output per

capita and the tail index of the firm size distribution, expressed as:

y(t)

y(t0)
=

k(t)

k(t)− 1
/

k(t0)

k(t0)− 1
,

in which k(t) is the tail index at time t, and t0 is a reference date for normalization.

Given estimates for y(t) and k(t), this equation allows for a direct comparison

between the left-hand side and the right-hand side to assess whether they align.

20The correlation coefficient provides a normalized measure that controls for the variance of
each variable, making it less sensitive to the choice of tail estimator than direct visual compar-
isons. Consequently, correlation coefficients yield a more robust assessment of model-data fit.
Appendix A.4.3 reports analogous results using the simple estimators kf and kemp. While direct
comparisons may vary across tail estimators, the correlation coefficients remain similarly high
and consistent.
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In Figure 3(a), I present a comparison between y and k/(k−1) in the U.S. over

the period 1978 to 2019. y is measured by the U.S. real GDP per capita, taken

from the Federal Reserve Economic Data (FRED). To facilitate comparison, both

series are normalized to their respective 1978 levels, with an index value of 100

assigned to that year. The results reveal a remarkably close alignment between the

two variables over the entire period. This strong relationship is further validated

by the 0.8360 correlation coefficient between ln y and ln k/(k − 1).

ln(k − 1) vs. t Equation (15) implies that k(t) − 1 declines toward zero at a

constant rate, so that ln(k(t)− 1) decreases linearly over time. Figure 3(b) plots

the time series of ln(k − 1) for the U.S. between 1978 and 2019, together with a

fitted linear trend. The results show that ln(k − 1) closely follows the fitted line,

with an R2 of 0.781 and a correlation coefficient of −0.8838.

6 Policy Implications

In this section, I show that the growth model in Section 4 delivers a novel per-

spective for evaluating size-dependent industrial policies. Idea search by indi-

vidual firms generates a knowledge diffusion externality: each firm’s search effort

shapes the productivity distribution, which in turn governs future search efficiency.

Searches by large firms contribute disproportionately to thickening the right tail

and generate positive spillovers for the entire economy, whereas searches by small

firms produce limited externalities for larger firms. Consequently, relative to the

first-best allocation, large firms underinvest in idea search, implying that policy

should encourage greater search activity among them.

I illustrate this implication through two policy experiments. In the first, I con-

sider a tax policy under which only firms above a targeted productivity threshold

engage in idea search in equilibrium and show that the resulting long-run growth

rate increases with the threshold level. In the second, I solve the social plan-

ner’s problem and show that the optimal search intensity approximately follows a

power function that rises with productivity. Together, these exercises demonstrate

that policies favoring large firms enhance welfare by better exploiting the diffusion

externality. Appendix C provides the omitted proofs and derivations.
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6.1 Taxing small firms’ idea search

In the first exercise, the policymaker sets a productivity threshold z∗ and imposes a

positive search tax τ on firms below it. Specifically, firms with productivity z < z∗

face a unit search cost of z(1 + τ)w(t), whereas those with productivity z ≥ z∗

retain the original unit cost zw(t). The tax revenue is rebated to households as a

lump sum transfer. The following proposition characterizes the equilibrium for a

positive tax τ > 0 and threshold z∗.

Proposition 2. For any threshold productivity z∗ ≥ 1, there exists an equilibrium

such that the equilibrium productivity distribution satisfies

F (z, t) =

1− z−k0 if z < z∗,

1− (z∗)k(t)−k0z−k(t) if z ≥ z∗,
(23)

in which k(t) = 1 + (k0 − 1) exp
(
−L(z∗)k0−1t

)
. In addition, the output per capita

growth converges to L(z∗)k0−1.

In the resulting equilibrium, firms below the threshold do not engage in search,

so that part of the productivity distribution remains constant. Consequently, the

tax rate itself is irrelevant for the equilibrium outcome. The upper part of the

distribution evolves as before, since firms above the threshold continue to search

at a uniform intensity. The key difference is that, with fewer firms searching, each

active firm hires more researchers and increases its search intensity, thereby accel-

erating output growth. Overall, taxing small firms discourages their inefficient use

of labor and expands the effective labor supply available to large firms. The poli-

cymaker can then increase the long-run growth rate L(z∗)k0−1 by choosing higher

thresholds z∗.21

6.2 The planner’s problem

In the second policy exercise, I consider the following problem in which a utilitarian

social planner maximizes the present value of the social welfare given an initial

21Appendix C.1 shows that Proposition 2 also holds for the case τ = 0, which corresponds to
the tax-free economy in Section 4. That is, for any z∗ ∈ [1,+∞), (23) describes an equilibrium
productivity distribution of the baseline model. Proposition 2 then illustrates the multiplicity
of equilibria that arises from the linear search cost.
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productivity density function f :

W (f) = max
{c(t),η(z,t)}

∫ ∞

0

e−ρtLu(c(t))dt

s.t. Lc(t) ≤
∫ ∞

0

zf(z, t)dz,∫ ∞

0

zη(z, t)f(z, t)dz ≤ L,

∂f(z, t)

∂t
= f(z, t)

[∫ z

0

η(x, t)
f(x, t)

1− F (x, t)
dx− η(z, t)

]
,

f(z, 0) = f(z).

(24)

The first two constraints are the respective goods and labor market clearing con-

ditions. The third equation is the law of motion on the density of the productivity

distribution, and the last one is the initial condition. The social planner chooses

the paths of consumption c(t) and search intensity η(z, t).

The optimal control problem (24) is challenging because the state variable is an

infinite dimensional object–a distribution. Lucas and Moll (2014) and Nuño and

Moll (2018) study similar planner’s problem in heterogeneous agent models. The

general idea is to transform the above problem into a system of finite-dimensional

partial differential equations and solve the policy function from there. Following

their strategy, I characterize the optimal search intensity η(z, t) in the proposition

below. I first present a definition of tail index for general distribution functions.

Definition (Regular Variation). Let f be a positive measurable function, defined

on some neighborhood [x0,∞), and satisfying

lim
x→∞

f(tx)

f(x)
= tα

for all t > 0 and some α ∈ R; then f is said to be regularly varying (at infinity)

with index α. If α = 0, f is said to be slowly varying (at infinity).

Definition (Tail Index). A non-negative random variable and its distribution are

said to have tail indices k ≥ 0 if the density function is regularly varying with

index −1− k.

Proposition 3. Given that F (z, t) has tail index k(t) > 1, the optimal search

intensity is regularly varying with exponent (k(t)− 1)/2, i.e.,

η∗(z, t) = z
k(t)−1

2 L(z, t),
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in which L(z, t) represents a slowly varying function. Moreover, L(z, t) is constant
over z if f(z, t) is exactly Pareto.

Proposition 3 indicates that under optimal search strategy, search intensity is

an approximate power function of firm productivity. To illustrate this further,

Figure 4 visualizes the comparison between search intensities in the competitive

equilibrium and the planner’s problem at time 0. With Assumption 1, Proposition

3 implies that the optimal search intensity η∗(z, 0) = Cz
k0−1

2 for some constant C.

The labor market clearing condition pins down this constant to be (k0−1)L
2k0

. Con-

trastingly, all firms search at the same intensity η(z, 0) = k0−1
k0
L in the competitive

equilibrium, as shown in Section 4.2. It is obvious that relative to the market out-

come, a social planner would reallocate researchers from low-productivity firms to

high-productivity firms.

SP : η∗(z, 0) = (k0−1)L
2k0

z
k0−1

2

CE : η(z, 0) = (k0−1)L
k0

z

η

Figure 4: An illustration of search intensity comparison

Notes. This figure illustrates the difference between search intensity under the optimal policy
and in the equilibrium. The blue line (SP ) plots the optimal search intensity η∗(z, 0), and the
red line (CE) the equilibrium search intensity η(z, 0).

A notable implication of the optimal search policy is that it induces jumps in

the tail index of the productivity distribution. For a distribution F (z, t) with tail

index k(t) > 1, its tail index drops instantly from k(t) to k(t)+1
2

, once the optimal

search policy is in place. To see this, consider an infinitesimal time interval [t, t+h].

The law of motion of the productivity distribution implies that

F̃ (z, t+ h) = F̃ (z, t)

[
1 + h

∫ z

0

η∗(x, t)
x

xf(x, t)

F̃ (x, t)
dx

]
= F̃ (z, t)

[
1 + h

∫ z

0
x

k(t)−1
2

−1L̃(x, t)dx
]
,
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in which L̃(z, t) = L(z, t)zf(z, t)/F̃ (z, t) and is slowly varying. The integral is

regularly varying with exponent k(t)−1
2

.22 F̃ (z, t + h) is then a regularly varying

function with exponent −k(t) + k(t)−1
2

= −k(t)−1
2

for arbitrary h. Therefore, there

is a jump in the tail index from k(t) to k(t)+1
2

. If k(t) = 1, there will be no changes

in the tail index since the integral term is also slowly varying.

Given an initial tail index k0 > 1, the sequence
{
1 + k0−1

2n

}
characterizes the

dynamics in the tail index under the optimal search policy. With countably many

jumps in continuous time, the tail index immediately becomes one, and the output

jumps into infinity.23 Figure A.9 illustrates this process in the appendix. Albeit

unusual, this result demonstrates the potential of tail growth.

6.3 Discussion

Solving the social planner’s problem provides a transparent illustration on the

benefits of favoring large firms when searches are directed towards more productive

firms. Nevertheless, it yields a growth explosion: the tail growth mechanism is so

powerful such that it is possible for the social planner to achieve infinite output

in the economy instantly. In the following discussion, I identify the assumptions

underlying this unusual feature and propose a potential remedy.

One deviation from existing idea search models is the absence of an technolog-

ical upper bound on how much information a firm can process in each instant.24

Consequently, it is possible for infinitely productive firms to process infinitely

many ideas immediately, resulting into jumps in the tail index.

However, imposing a boundedness condition alone is insufficient to prevent

growth explosions. Suppose that η̄ represents the maximum number of ideas a

firm can process instantaneously. The arrival rate of ideas for firm z is then given

by η(z, t) = max{l(z, t)/z, η̄}, where l(z, t) denotes the number of researchers hired

by the firm. Evidently, the threshold equilibrium described in Section 6.1 remains

feasible, as η(t) declines to zero, eventually falling below η̄ along the equilibrium

path. To achieve even faster growth, the social planner can improve this strategy

by selecting a time-dependent threshold z∗(t) such that only firms with z > z∗(t)

22This result follows directly from Karamata’s theorem in the theory of regular variation (see
Theorem 1.5.11 in Bingham et al. (1987)).

23If output remains finite for some interval t ∈ [0, t0] with k(t) = 1, the social planner can
always lower the tail index to below one before t0—for example, by following the equilibrium
strategy—while still satisfying the labor market clearing condition. Since a tail index below one
implies an infinite mean of the productivity distribution, and thus infinite output, the existence
of any finite-output interval would contradict the optimality of the policy.

24For example, models in Lucas and Moll (2014) and Perla and Tonetti (2014) assume en-
dogenous technology adoption with bounded arrival rate of ideas.
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search, and they always search at the maximum intensity η̄. I leave a complete

analysis in Appendix C.3 to show that given such strategy, the right tail of the

productivity distribution is still Pareto, and the tail index k(t) decreases at a

constant rate −η̄, i.e.,

k̇(t)

k(t)
= −η̄.

Hence, k(t) reaches unity at time T = ln(k0)/η̄, at which point output also becomes

infinite. In other words, the boundedness condition merely extends the time for

the output to reach infinity from zero to a finite value.

This example illustrates well the nature of the growth explosion: whenever the

search technology makes it feasible to vary the tail index, one could thicken the

right tail as fast as possible to achieve higher growth. Conversely, this anomaly

vanishes if the tail index remains constant for any feasible search strategy, as in

the model of Lucas and Moll (2014).

I then consider the following generalization of the model in Section 4. Assume

the same search process and cost as before except that adoption now is not guaran-

teed upon meeting. Specifically, I assume that conditional on meeting each other,

the probability for a searching firm x to adopt the technology of the meeting firm

y (y > x) is given by (
1− F (y, t)

1− F (x, t)

)λ
,

where λ ≥ 0. The baseline model is the case with λ = 0. In contrast, it becomes

increasingly difficult for firms to adopt a higher-ranked technology if λ > 0.

The generalized model with λ > 0 effectively eliminates growth explosions in

the planner’s problem while closely approximating the equilibrium properties of

the baseline model. I summarize two key results here, and a complete analysis

can be found in Appendix C.4. First, I prove that in any generalized model with

λ > 0, given an upper bound η̄ on the arrival rate of ideas, the tail index remains

constant under any search strategy feasible for a social planner.25 Consequently,

the total output is always finite, and growth explosions never occur.

Second, the generalized model converges to the baseline model as λ approaches

zero. For sufficiently small values of λ, the generalized model provides a close

25I also demonstrate in Appendix C.4 that the boundedness condition is necessary. Without
an upper bound on η(z, t), the social planner can implement similar policies as in Section 6.2 in
the generalized model with λ > 0 to thicken the right tail immediately.
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approximation of the baseline model. Numerically, I compare the equilibrium dy-

namics of the baseline model with those of the generalized model, setting λ = 10−4.

Under plausible parameter values, the evolution of the productivity distribution

and the measured tail indices over a 400-year horizon are nearly indistinguishable

between the two models.26

7 Extensions

The model in Section 4 is intentionally simplified to ensure tractability and yield

sharp analytical insights. It omits four common elements of growth models. First,

firms make no input decisions in production. Second, there is no entry or exit, and

the measure of firms is given exogenously. Third, technological progress is absent.

Fourth, the population remains constant. It is therefore important to verify that

the results in Section 4 do not rely critically on these simplifying assumptions.

In this section, I extend the model to incorporate all four elements. I show

that the extended framework not only preserves the key properties of the baseline

model but also generalizes its main insights. Proofs and derivations are omitted

for brevity but are provided in Appendix D.

7.1 The environment

Table 1 summarizes the economic environment of the extended model.

Production Each firm now produces a differentiated intermediate good ω under

monopolistic competition. The intermediate good output q is a linear function of

production labor lp: q = z̃lp, where z̃ denotes firm specific efficiency. The unique

final good Y (t) is produced competitively by aggregating over intermediate goods

q(ω, t):

Y (t) =

(∫
Ω(t)

q(ω, t)
σ−1
σ dω

) σ
σ−1

, σ > 1, (25)

where Ω(t) denotes the set of intermediate goods at time t, and σ is the elasticity

of substitution across varieties. The final good serves as the numeraire, implying

26The measured tail index follows the construction of kf , targeting the top 10% and 0.5% of
firms. Thus, it differs from the tail index defined in terms of regular variation, as in Section 6.2. It
should be noted that when λ > 0, idea search cannot sustain exponential growth indefinitely with
the absence of tail growth. However, the numerical example shows that it can still approximate
exponential growth over an extended period. See Appendix C.4 for further discussions.
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Table 1: The economic environment of the extended model

Utility
∫∞
t
e−ρ(τ−t) c(τ)

1−θ−1
1−θ dτ

Population growth L̇(t)/L(t) = gL(t) ≥ 0

Managerial ability e e ∼ J for e ≥ 0, K(e) =
∫∞
e
xdJ

Final good Y (t) =
(∫

Ω(t)
q(ω, t)

σ−1
σ dω

) σ
σ−1

, σ > 1

Intermediate good q = z̃lp, z ≡ z̃σ−1 ∼ F (z, t)

Technological obsolescence ż∗(t)/z∗(t) = gz(t) ≥ 0

Idea search:
Firm z ≥ z∗(t) random draws from F (x|x ≥ z, t) using lr
Firm z < z∗(t) no draws
Entrants random draws from F (x|x ≥ z∗(t), t) using e

Resource constraints:
Final good Lc(t) = Y (t)
Production workers lp M(t)

∫∞
1
lp(z, t)dF (z, t) = (1− s)L(t)

Researchers lr M(t)
∫∞
z∗(t) lr(z, t)dF (z, t) = sJ(e∗(t))L(t)

Entrepreneurs E(t)ψz∗(t) = sK(e∗(t))L(t)

that the ideal price index P (t) = 1, so that Y (t) also equals total expenditure.

Firms choose prices to maximize static profits given residual demand from (25)

and the wage of production workers wp(t). Defining z ≡ z̃σ−1, standard results give

that firms’ production employment lp, revenue r, and profit π have the following

expressions and are linear in z:

lp(z, t) =
σ − 1

wp(t)
π(z, t), r(z, t) = σπ(z, t), and π(z, t) = π(t)z, (26)

where π(t) = 1
σ
Y (t)

(
σ
σ−1

wp(t)
)1−σ

. I therefore use z to denote firm productivity

and focus on the distribution F (z, t).27

Demography Households are representative and have measure L(t), which now

grows at an exogenous rate gL(t) ≡ L̇(t)/L(t) ≥ 0. Each household contains a unit

continuum of members, of whom 1 − s are unskilled and s are skilled. Unskilled

workers are homogeneous and only engage in production. Whereas, skilled labor

choose between employment as researchers in incumbent firms or entrepreneurship

by founding new firms. They are homogeneous as researchers but heterogeneous in

27Because of the linear relationships in (26), the distributions of firms’ revenues, profits,
production employment, and productivity z are identical up to scale. Hence, F (z, t) can represent
the firm size distribution as in the baseline model.
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the managerial ability e as entrepreneurs, which follows a continuous distribution

J with support [0,+∞). This occupation choice gives rise to firms’ entry.

Household members consume final good c(t) and have the same intertemporal

utility as in (9). With perfect insurance within the household, the individual utility

maximization problem is the same as in the baseline model, given the income flow

y(t). Assume that households own the firms and the government runs balanced

budget, the household income equals to output per capita, i.e., y(t) = Y (t)/L(t).

Technological progress In the baseline economy, the median firm productivity

remains constant in the long run, and the least productive technology z = 1 is

always the most prevalent among firms. This is because with only tail growth,

there lacks forces that shift the overall productivity distribution and make it a

traveling wave as in many firm-based growth models.

I now introduce a technological progress that directly shifts the productivity

distribution. Specifically, I model it through a productivity threshold z∗(t) that

grows exogenously at a continuous rate gz(t) ≡ ż∗(t)/z∗(t) ≥ 0. Entrant firms

draw their productivity randomly from incumbents with productivity above z∗(t).

This captures the notion that each new technology vintage, embodied in the entry

cohort of firms, builds upon and enhances the previous ones. Meanwhile, technolo-

gies with productivity below z∗(t) are deemed obsolete, and firms using them can

no longer upgrade through idea search. This yields technological obsolescence that

low-productivity technologies gradually vanish over time. I will later show that

the resulting productivity distribution evolves as an asymptotic traveling wave.

Incumbent firms Let wr(t) denote the wage of researchers and r(t) the interest

rate. All firms face an exogenous exit shock with Poisson arrival rate δ. The HJB

equation for firms with productivity z < z∗(t) is given by:

(r(t) + δ) v(z, t) = π(z, t) + ∂tv(z, t). (27)

In words, firms with obsolete technologies are search-inactive and only earn static

profits until they exit the market. Contrastingly, firms with productivity z ≥ z∗(t)

remain search-active and choose search intensities optimally as in the baseline case.

Their HJB equation is given by:

(r(t) + δ) v(z, t) = π(z, t) + ∂tv(z, t)

+max
η≥0

η

{∫ ∞

z

[v(x, t)− v(z, t)]dF (x|x ≥ z, t)− ψzwr(t)

}
,

(28)
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where the new parameter ψ > 0 measures the efficiency of the search technology,

and the unit search cost (in terms of researchers) is now ψz.

Firm entry As described earlier, entrepreneurs found new firms by sampling

ideas from incumbent firms with non-obsolete technologies. At the startup stage,

they cannot hire researchers but have to rely on their managerial ability for idea

search. The unit search cost in terms of managerial ability is ψz∗(t), so en-

trepreneurs with ability e have an arrival rate of ideas equal to e/(ψz∗(t)). The

expected firm value vE is then

vE(e, t) =
e

ψz∗(t)

∫ ∞

z∗(t)
v(x, t)dF (x|x ≥ z∗(t), t). (29)

Skilled labor chooses to be entrepreneurs if and only if the the expected firm

value vE(e, t) exceeds the after-tax(subsidy) wage of researchers (1 − τr)wr(t),

where τr is the tax (subsidy) rate on researchers’ wage. The government also makes

lump sum transfer to houesholds to balance the budget. Since J is continuous and

has support [0,+∞), there exists a threshold e∗(t) such that only skilled labor

with e ≥ e∗(t) becomes entrepreneurs. The measure of total entrants E(t) is then

E(t) =
sK(e∗(t))L(t)

ψz∗(t)
, (30)

where K(e) ≡
∫∞
e
xdJ(x).

Market clearing Labor markets for production workers and researchers clear

in the equilibrium. Namely,

M(t)

∫ ∞

1

lp(z, t)dF (z, t) = (1− s)L(t), (31)

M(t)

∫ ∞

z∗(t)
lr(z, t)dF (z, t) = sJ(e∗(t))L(t), (32)

where firms’ demand for researchers lr(z, t) = ψzη(z, t). While the share of pro-

duction workers in the population is always constant, the share of researchers

is endogenous and governed by the startup threshold e∗(t). With representative

houesholds, goods market clearing requires that L(t)c(t) = Y (t).

Law of motion of the aggregate state The measure of incumbent firmsM(t)

and productivity distribution F (z, t) summarize the endogenous aggregate state
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of the extended model. Following the previous description on firm entry and exit,

Ṁ(t) = E(t)− δM(t). (33)

Let gM(t) ≡ Ṁ(t)/M(t), and gE(t) ≡ E(t)/M(t) ≥ 0. The above equation could

be rewritten as gM(t) = gE(t)− δ.

With technological obsolescence and firm entry, the productivity distribution

evolves differently among search-active and search-inactive firms. For z < z∗(t),

∂F (z, t)

∂t
= −gE(t)F (z, t). (34)

This is intuitive as firms using obsolete technologies cannot search and gradually
die out. For z ≥ z∗(t),

∂F (z, t)

∂t
= −

∫ z

z∗(t)

η(x, t)(1− F (z|z ≥ x, t))dF (x, t)− gE(t)
F (z∗(t), t) (1− F (z, t))

1− F (z∗(t), t)
. (35)

The first term is the same as in the baseline case reflecting incumbents’ idea search,

while the second term captures the entry of new firms. Let F ∗(t) ≡ F (z∗(t), t)

denote the share of search-inactive firms at time t. Moreover, define T ∗(z) as the

stopping time when the obsolescence threshold z∗(t) reaches productivity z, i.e.,

z∗(T ∗(z)) = z and F ∗(T ∗(z)) = F (z, T ∗(z)).

The initial state of the economy mirrors the baseline model. Specifically, the

productivity distribution F (z, 0) = 1−z−k0 for z ≥ 1 with k0 > 1, the obsolescence

threshold z∗(0) = 1, and the measure of incumbent firms M(0) = 1.

Equilibrium The notions of competitive equilibrium and asymptotic balanced

growth path are defined analogously to those in the baseline model. A full char-

acterization is provided in Appendix D.1. In addition, I introduce the concept of

a traveling wave equilibrium to capture balanced growth in the evolution of the

productivity distribution.28

Definition (Traveling wave equilibrium). An asymptotic traveling wave equilib-

rium is an equilibrium in which the productivity distribution F (z, t) admits a

velocity function γ(t) > 0 and a stationary distribution Γ(z) such that for all z,

lim
t→∞

F (zγ(t), t) = Γ(z).

28This definition generalizes the BGP definition in Buera and Lucas (2018) that F (zevt, t) =
Γ(z) for all t ≥ 0 and some constant v > 0.
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The equilibrium becomes an (exact) traveling wave equilibrium if the above equal-

ity also holds for all t ≥ 0.

7.2 Solving the equilibrium

I follow the strategy in Section 4.2 to solve the equilibrium of the extended model.

I first present firms’ idea search policy and the resulting productivity distribution.

I then derive the associated transition dynamics of the aggregate state and, finally,

analyze the long-run behavior of the equilibrium.

To begin with, the following proposition extends the logic of the baseline anal-

ysis by showing that there exists an equilibrium in which all firms above the obso-

lescence threshold z∗(t) search at the same intensity. The productivity distribution

of search-active firms (the right tail) evolves analogously to the baseline model,

maintaining a Pareto form with a declining tail index. Whereas, the distribution

of search-inactive firms (the left tail) is shaped by technological obsolescence and

firm entry, captured respectively by gz(t) and gE(t).

Proposition 4. There exists an equilibrium with the following properties:

i) The search intensity is invariant across productivity among search active

firms, i.e., η(z, t) = η(t) > 0 for z ≥ z∗(t);

ii) The equilibrium productivity distribution at time t is

F (z, t) =

 1− (1− F ∗(t))
(

z
z∗(t)

)−k(t)
, if z ≥ z∗(t),

F ∗(T ∗(z))e−
∫ t
T∗(z) gE(s)ds, if z < z∗(t),

(36)

in which k̇(t)/k(t) = −η(t) < 0, and Ḟ ∗(t) = k(t)gz(t) (1− F ∗(t))−gE(t)F ∗(t).

With Proposition 4, the productivity distribution F (z, t) can be summarized by

two variables: the share of search-inactive firms F ∗(t) and the tail index k(t). To-

gether with the measure of incumbents M(t), these variables constitute sufficient

statistics for the endogenous aggregate state, whose evolution can be expressed as

a system of first-order ordinary differential equations (ODEs):

Proposition 5. In the above equilibrium, the dynamics of (M(t), F ∗(t), k(t)) is

36



governed by the following system of first-order ODEs:

Ṁ(t)

M(t)
+ δ = gE(t), (37)

Ḟ ∗(t) = k(t)gz(t) (1− F ∗(t))− gE(t)F
∗(t), (38)

gTG(t) ≡ − k̇(t)

k(t)− 1
=

J(e∗(t))

K(e∗(t))

gE(t)

1− F ∗(t)
, (39)

where e∗(t) = (1− τr)/k(t), and gE(t) =
sK(e∗(t))L(t)
ψM(t)z∗(t) .

The first two equations follow directly from Equation (33) and Proposition 4.

The startup threshold e∗(t) and corresponding entry rate gE(t) are determined by

the individual entrepreneurial choice. Equation (39) generalizes the tail dynamics

in (15) from the baseline model and follows from the market clearing condition for

researchers. gTG(t) then represents the rate of tail growth. Given exogenous paths

of L(t) and z∗(t), the equilibrium trajectories of (M(t), F ∗(t), k(t)) solve the ODE

system above with initial conditions M(0) = 1, F ∗(0) = 0, and k(0) = k0 > 1.

Finally, I analyze the behavior of the equilibrium when time approaches in-

finity. To obtain an asymptotic balanced growth path, I focus on cases where

population and the obsolescence threshold grow asymptotically at constant rates

g∗L and g∗z , respectively, with g
∗
L+ δ > g∗z to ensure positive firm entry in the limit.

The following proposition summarizes the asymptotic features of the equilibrium.

Proposition 6. Assume limt→∞ gL(t) = g∗L, limt→∞ gz(t) = g∗z > 0, and g∗L + δ >

g∗z . Suppose further that ρ > (1 − θ)g∗, the above equilibrium has the following

features as t→ ∞:

i) The tail index k(t) decreases to k∗ = 1, and the startup threshold e∗(t)

increases to e∗ = 1− τr. Moreover,

g∗TG ≡ lim
t→∞

gTG(t) =
J(e∗)

K(e∗)
(g∗L + δ); (40)

ii) The measure of firms growth gM(t) converges to g∗M = g∗L − g∗z ;

iii) The share of search-inactive firms F ∗(t) converges to f = g∗z
g∗L+δ

;

iv) F (z, t) is an asymptotic traveling wave with velocity z∗(t), i.e.,

lim
t→∞

F (rz∗(t), t) = Γ(r) ≡

 frς , for r ∈ (0, 1),

1− (1− f)r−1, for r ≥ 1,
(41)
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where ς = g∗E/g
∗
z , and g

∗
E ≡ limt→∞ gE(t) = g∗L − g∗z + δ > 0;

v) The growth rate of mean productivity, Z(t) ≡
∫∞
1
zdF (z, t), converges to

g∗z + g∗TG;

vi) The output per capita growth g(t) ≡ ẏ(t)/y(t) converges to g∗ =
g∗TG+g∗L
σ−1

.

The condition ρ > (1 − θ)g∗ ensures finite household utility and that the

transversality condition is satisfied. Proposition 6 establishes that the extended

model features an asymptotic traveling wave equilibrium, in which the limiting

productivity distribution exhibits a Zipfian right tail. The economy converges to

a balanced growth path where the measure of incumbents, mean productivity, and

output per capita all grow at asymptotically constant rates.

7.3 Discussions

Building on the equilibrium analysis above, I now discuss how the extended model

generalizes and deepens the insights from the baseline framework.

First, the extended model preserves the four key properties established in Sec-

tion 4.3: thickening right tails, Gibrat’s law, Zipf’s law, and an asymptotic bal-

anced growth path. The first two follow directly from Proposition 4, although

Gibrat’s law now holds only within the right tail among search-active firms. The

limiting results in Proposition 6 confirm the latter two: the right tail converges to

Zipf’s law, and output per capita exhibits asymptotic balanced growth. Moreover,

the productivity distribution evolves as an asymptotic traveling wave, representing

a form of “balanced growth” in the distribution itself.

Second, the extended model clarifies the nature of tail growth along two di-

mensions. The first concerns scale effects. Equation (40) shows that any expan-

sion in the effective supply of skilled labor—whether through population growth

(higher L(t)), improved search efficiency (lower ψ), or greater educational at-

tainment (higher s)—is fully offset by increased firm entry. Consequently, the

long-run growth rate remains unchanged. The absence of scale effects aligns with

the second-generation endogenous growth models exemplified by Peretto (1998)

and Young (1998).

The second dimension concerns the comparison between tail growth and variety

expansion. With a love-of-variety preference, the startup threshold e∗(t) embodies

a trade-off between the variety gains from more entrepreneurship and tail growth

generated by more intensive idea search among incumbents. The former yields

only a level effect: the long-run variety growth rate g∗M is determined by exogenous

38



population growth and technological obsolescence. In contrast, tail growth remains

a key driver of long-run growth. Consequently, policies that promote idea search by

incumbent firms—for instance, subsidizing researchers (τr < 0)—can still enhance

the long-run growth rate.29

Finally, the extended model offers new perspectives into the link between firm

size distribution and economic growth. Let Z(t) denote the mean of the productiv-

ity distribution F (z, t). Conventional firm-based growth models typically focus on

equilibria where F (z, t) forms an exact traveling wave, implying that Z(t) grows at

the same rate as the wave’s velocity.30 This restriction, however, rules out growth

driven by reallocation dynamics. In contrast, the extended model features an

asymptotic traveling wave equilibrium in which the growth rate of Z(t) converges

to g∗z +g
∗
TG, exceeding the velocity growth rate g∗z . The additional component g∗TG

originates from the progressive thickening of the right tail toward Zipf’s law. In

this sense, tail growth provides a concrete mechanism through which reallocation

gains can persist and contribute directly to long-run economic growth.

8 Conclusions

This paper develops new theory and evidence on the dynamics of firm size dis-

tributions along the process of economic growth. Empirically, I document that

the right tail of the firm size distribution systematically thickens as economies

grow. Theoretically, I construct a growth model based on idea search that ra-

tionalizes this pattern as an equilibrium feature of the growth path. The model

further generates a secular rise in market concentration and Zipf’s law in the firm

size distribution. On the policy side, it suggests that policies favoring large firms

can better utilize the diffusion externality resulting from idea search, leading to

improved welfare.

Beyond providing an explicit theory for the thickening of the right tail along

the growth path, the model highlights that the reallocation gains from tail growth

can persist if the firm size distribution converges to a limiting distribution with

tail index equal to one. By contrast, given appropriate initial conditions, standard

29Notably, the long-run output per capita growth rate g∗ is independent of the exogenous
technological progress z∗(t). Since growth is jointly driven by expanding varieties and produc-

tivity improvements, g∗ =
g∗
M+g∗

Z

σ−1 =
g∗
L−g∗

z

σ−1 +
g∗
z+g∗

TG

σ−1 , where the effects of g∗z cancel out.
30As an exact traveling wave, the productivity distribution is stationary (after scaling),

i.e., F (zγ(t), t) = Γ(z) with γ(t) its velocity. Therefore, its mean Z(t) ≡
∫∞
0
z dF (z, t) =

γ(t)
∫∞
0
z dΓ(z), growing at the same rate as γ(t). While the productivity distribution is almost

stationary in an asymptotic traveling wave equilibrium, Z(t) needs not to grow at the same rate
as the wave’s velocity, as the extended model shows.
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firm dynamics models such as Luttmer (2007) can, in principle, generate a firm size

distribution with thickening right tails during the transition dynamics. In those

models, the firm size distribution converges to a stationary distribution with a tail

index strictly greater than one, implying that tail growth vanishes in the long run.

Given the distinct long-run implications, an interesting direction for future work

is to compare these theories based on their ability to account for the historical

decline in the tail index and to quantify the contribution of tail growth.

Finally, the central analysis of this paper is carried out in a starkly simple con-

text in order to elucidate the economic forces and the nature of their interactions.

That said, additional firm characteristics, such as market power and innovation,

are crucial for a comprehensive design of size-dependent industrial policies. Ex-

ploring the policy implications of the diffusion mechanism within a richer firm-

based growth framework remains a promising avenue for future research.
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Appendix A Additional empirical results

A.1 Details of tail estimation in Section 2.1

A.1.1 The Employment-based simple estimator

One can construct a similar simple estimator by directly inverting the top employment shares.

Consider two thresholds TL > TS from {Ti}ni=0, with corresponding top employment shares

EL < ES . The smaller threshold TS defines the right tail. Under the Pareto assumption in

equation (1), Ex = (Tx/T0)
1−k, the tail index can be recovered as

kemp = 1− ln
EL
ES

/ ln
TL
TS
.

I verify that all empirical findings are robust to the employment-based simple estimator

kemp. For the OECD countries, Table A.1 reports the regression results from equation (2)

using kemp, and Figure A.4 illustrates the negative relationship between the tail index (based

on kemp) and log GDP per capita. For the United States, Figure A.5 shows that the tail index

constructed from kemp exhibits a similar downward trend over time. A detailed comparison of

the three tail estimators is deferred to Section A.4.

A.1.2 The Toda-Wang estimator

I first introduce the original tail estimator in Toda and Wang (2021) for estimating the tail index

of income distributions and then discuss its translation to the context of firm size distributions.

Toda and Wang (2021) consider a tabulated income distribution defined by a sequence of

top income percentiles 0 < p1 < · · · < pK < pK+1 and the corresponding top income shares

S1 < · · · < SK < SK+1. They construct the following vector of self-normalized, non-overlapping

top income shares s̄:

s̄ ≡ (s̄1, . . . , s̄K−1)
T ≡

(
S2 − S1

SK+1 − SK
, . . . ,

SK − SK−1

SK+1 − SK

)T
.

A well-defined s̄ requires K ≥ 2, which implies the availability of at least three size thresholds.

If the underlying distribution follows a Pareto distribution with tail index α, then Sk = p
1− 1

α
k ,

and the normalized top income shares s̄ are given by

r̃(ξ) ≡ (r̃1(ξ), . . . , r̃K−1(ξ))
T ≡

(
p1−ξ2 − p1−ξ1

p1−ξK+1 − p1−ξK

, . . . ,
p1−ξK − p1−ξK−1

p1−ξK+1 − p1−ξK

)T
,

where ξ ≡ 1/α. Since Sk must be finite, α > 1 is required. The estimator ξTW ∈ (0, 1) minimizes

the weighted distance between the model-implied moments r̃(ξ) and the data moments s̄:

min
ξ∈(0,1)

(r̃(ξ)− s̄)T Ω̃(ξ)−1(r̃(ξ)− s̄),

1



where Ω̃(ξ) is the optimal weighting matrix that achieves efficiency.1 The estimated tail index

is then αTW = 1/ξTW .

In the context of firm size distributions defined in Section 2.1, the top firm shares Ni

correspond to the top income percentiles pk, and the top employment shares Ei correspond to

the top income shares Sk. These two sets of top shares can be translated as follows.

Let pK = (pk)
K+1
k=1 and SK = (Sk)

K+1
k=1 denote the vectors of top income percentiles and

shares, respectively. The moments defined above can be expressed as functions of these data

vectors: s̄ = s̄(SK), r̃(ξ) = r̃(ξ;pK), and Ω̃(ξ) = Ω̃(ξ;pK). Following Toda and Wang (2021), I

define r(α) ≡ r̃(1/α) and Ω(α) ≡ Ω̃(1/α). Now consider a right tail threshold TR for the firm

size distribution. I define the following mapping from NR to pK (simultaneously, ER to SK):

K = n−R, pk = N−k+n+1, and Sk = E−k+n+1.

Then, (p1, · · · , pK , pK+1) = (Nn, · · · , NR+1, NR), and (S1, · · · , SK , SK+1) = (En, · · · , ER+1, ER).

Therefore, I define s̄(ER) = s̄(SK), r(k;NR) = r̃(1/k;pK), and Ω(k;NR) = Ω̃(1/k;pK). The

Toda-Wang estimator in Section 2.1 is then well-defined.

A.2 Details of the results in Section 2.2

A.2.1 Data sources

The OECD SBS The sample covers all OECD member countries as of 2018, excluding

Chile, Mexico, and Korea due to data inconsistencies or incomplete series. Although the original

database spans 2005-2018, I focus on the period 2008-2017. Few countries report data before

2008, and both 2007 and 2018 display systematic discontinuities, likely reflecting changes in

measurement practices.

Firm size is measured by the number of employees, defined as the total number of persons

working in or for the enterprise during the reference year, including both full-time and part-

time workers. The raw dataset contains heterogeneous size classifications across countries and

years—such as 1-249, 1-9, 10-19, 10-49, 20-49, 50-249, 250+, and Total. To enhance cross-

country comparability, I standardize these categories into four uniform size classes: 1-9, 10-49,

50-249, and 250+.

The U.S. BDS The sample covers the universe of U.S. business firms. Firm size is measured

by total employment, defined as the number of full- and part-time workers on the payroll during

the reference year.

A.2.2 Full regression results for the OECD countries

Table A.1 reports the full regression results from equation (2) for all three estimators—kf , kemp,

and kTW . Notably, the sample size based on the Toda-Wang estimator (247) is substantially

1Ω̃ depends only on ξ and {pk}K+1
k=1 . See Proposition 3.1 of Toda and Wang (2021) for its exact

functional form.
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Table A.1: Tail index and log GDP per capita in OECD countries

kTW kTW kf kf kemp kemp

Log GDP p.c. -0.02531a -0.06079a -0.05926a -0.07669a -0.05598a -0.02793a

(0.009) (0.018) (0.017) (0.015) (0.010) (0.009)

Cons. 1.3974a 1.7726a 1.7629a 1.9473a 1.8573a 1.5608a

(0.101) (0.186) (0.185) (0.163) (0.103) (0.093)

Country FE No Yes No Yes No Yes
k mean 1.130 1.130 1.136 1.136 1.266 1.266
Obs. 247 247 299 299 297 297
R2 0.024 0.880 0.056 0.969 0.124 0.978

Notes This table reports the results of regression (2) between the tail index k and log GDP per
capita among OECD countries. Each observation is a country-year pair. The tail index are kTW

with TR = 10, kf and kemp with TS = 10 and TL = 250. The log GDP per capita is in constant
international dollars. Robust standard errors are in parentheses. c p < 0.10, b p < 0.05, a p < 0.01.
Sources: the OECD SBS and PWT 10.0

smaller than that based on the simple estimators (299 and 297), reflecting the frequency with

which the constraint k > 1.001 binds during estimation.

A.2.3 Alternative thresholds for the U.S. tail indices

As shown in Figure A.1, the downward trend in the tail index remains consistent across alter-

native choices of thresholds.

A.3 Robustness analyses in Section 2.3

A.3.1 Across sectors

Table A.2 reports the results from regression (2) using the sectoral tail index as the dependent

variable. The estimates show that both manufacturing and services exhibit thicker right tails as

economies grow. If anything, the right tail tends to be thicker in manufacturing than in services.

This implies that structural transformation—toward a greater share of services—would raise

rather than lower the aggregate tail index.

Notably, the sample size for the manufacturing sector is considerably smaller for the Toda-

Wang estimator (87 observations) than for the simple estimators kf (294) and kemp (295). A

plausible explanation is that manufacturing exhibits a thicker right tail, leading to more frequent

binding of the constraint k > 1.001 in estimation.

A.3.2 Across countries

Table A.1 confirms that the negative relationship between the tail index and log GDP per capita

holds among OECD countries even without controlling for country fixed effects. I next examine

whether a similar cross-sectional relationship holds in developing economies using data from the

World Bank Enterprise Survey (WBES).

3



(a) kf , TL = 500 (b) kf , TL = 1000

(c) kemp, TL = 500 (d) kemp, TL = 1000

Figure A.1: Tail indices kf and kemp in the U.S. (1978-2019) with alternative thresholds

Notes. This figure illustrates the tail index k of the size distribution for all U.S. business firms from
1978 to 2019. The tail indices are estimated using either the firm-based or employment-based simple
estimator (kf or kemp), with corresponding thresholds TS and TL as labeled in the labels. Data source:
the U.S. Census BDS.
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Table A.2: Tail index and log GDP per capita in OECD countries

kTW kf kemp

MFT SEV MFT SEV MFT SEV

Log GDP p.c. -0.06969c -0.1183a -0.1163a -0.1344a -0.05381a -0.03915a

(0.039) (0.026) (0.021) (0.020) (0.014) (0.009)

Cons. 1.8096a 2.4222a 2.2067a 2.6000a 1.8150a 1.6722a

(0.400) (0.271) (0.224) (0.208) (0.148) (0.095)

Country FE Yes Yes Yes Yes Yes Yes
k mean 1.088 1.174 0.979 1.180 1.247 1.259
Obs. 87 275 294 297 295 295
R2 0.850 0.700 0.971 0.952 0.976 0.975

Notes This tables reports the regression results of equation (2) between the tail index k and log
GDP per capita among OECD countries by sectors. The tail index are kTW with TR = 10, kf and
kemp with TS = 10 and TL = 250. They are estimated respectively using the size distributions
of firms in the manufacturing (MFT) or service (SEV) sector. The log GDP per capita is in
constant international dollars. Robust standard errors are in parentheses. c p < 0.10, b p < 0.05,
a p < 0.01. Sources: the OECD SBS and PWT 10.0

The WBES is a collection of surveys conducted by the World Bank designed to provide a

representative portray of a country’s business economy. Using an early WBES sample (2006-

2010), both Ayyagari et al. (2014) and Garćıa-Santana and Ramos (2015) document that the

employment share of large firms (100+ employees) is higher in high-income countries relative

to low-income countries.

I extend this analysis using a more recent WBES sample covering 2006–2019, which yields

broader country and time coverage. Specifically, I use the Employment Indicators—the official

harmonized aggregate employment statistics—to obtain employment shares by firm size for each

country-year pair. The sample covers more than 130 countries, of which 113 are classified as low-

, lower-middle-, or upper-middle-income countries. Firms are grouped into three size categories

based on the number of employees: 5-19 (small), 20-99 (medium), and 100+ (large). Setting

TS = 5 and TL = 100, the employment-based simple estimator kemp becomes a monotonic

transformation of the employment share of large firms, aligning with the methodologies in

Ayyagari et al. (2014) and Garćıa-Santana and Ramos (2015).2

Figure A.2 plots the estimated tail index kemp against log GDP per capita for the 113

developing countries in the sample.3 The observed negative relationship shows that richer

economies tend to display thicker right tails in their firm size distributions. Table A.3 reports

the underlying regression results and further shows that this relationship remains robust when

2Formally, kemp = 1 − log(employment share of large firms)/ log(100/5). The choice of TS = 5
ensures both the validity of the monotonic transformation and adequate coverage of the right tail in most
developing economies. Bento and Restuccia (2021) show that the average non-agricultural establishment
size is below five employees in 90% of countries with a log GDP per capita below 10.23—the highest
value observed in my baseline WBES sample.

3The estimators kf and kTW cannot be computed here because the WBES Employment Indicators
do not report firm counts by size.
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extending the sample to include high-income countries or when adding year fixed effects.
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Figure A.2: Tail index and log GDP per capita in developing countries

Notes. This figure plots the tail index kemp against the log GDP per capita for each developing country
(country-year) in the WBES sample. The red line is the linear fit. The tail index kemp is estimated
using the simple estimator kemp with TS = 5 and TL = 100. The log GDP per capita is in constant
international dollars. Data sources: the WBES Employment Indicators and PWT 10.0.

It is important to highlight several data challenges in extending the relationship between

the tail index and economic development to the case of developing countries. First, commonly

used datasets such as the WBES capture only formal firms, while informal firms—prevalent

and typically smaller in developing economies—are excluded. This omission likely induces

a downward bias in estimated tail indices. Second, a longstanding but debated hypothesis

suggests that firm size distributions in developing countries may be bimodal, with relatively

few mid-sized firms compared with advanced economies. This potential “missing middle” casts

doubt on whether the Pareto distribution is still a reasonable approximation for the firm size

distribution.4 Third, cross-sectional evidence for developing countries does not directly speak

to tail dynamics. The development literature has emphasized greatly the role of institutional

distortions in shaping firm size distribution in developing countries, which are contrastingly

low in developed countries. As economies grow and distortions evolve, the time path of the

tail index may therefore differ from that observed in advanced economies. These challenges

underscore the need for comprehensive panel data based on business censuses that cover both

formal and informal sectors.5

Consistent with these data challenges, Figure A.2 shows substantial variation among coun-

tries with similar GDP per capita. Notably, many low-income countries exhibit very thick right

tails. The R2 for the cross-sectional regression of developing countries (country-year pairs) is

4Tybout (2000, 2014) and Hsieh and Olken (2014) provide contrasting views on the existence of a
“missing middle” among mid-sized firms in developing countries. Notably, Tybout (2014) show that
mid-sized firms account for a much smaller share of employment than would be implied by a Pareto
distribution.

5A notable attempt is Abreha et al. (2022), who study the “missing middle” hypothesis using
establishment-level censuses from Sub-Saharan African countries.
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Table A.3: Tail index and log GDP per capita in developing countries

kemp kemp kemp kemp

Log GDP p.c. -0.03461a -0.02567b -0.03794a -0.03164a

(0.013) (0.010) (0.013) (0.011)

Cons. 1.5877a 1.5140a 1.6169a 1.5674a

(0.113) (0.096) (0.119) (0.105)

k mean 1.285 1.284 1.285 1.284
HI countries No Yes No Yes
Year FE No No Yes Yes
Obs. 232 270 232 270
R-sq 0.036 0.026 0.092 0.092

Notes This tables reports the results of regressing the tail index on log
GDP per capita in developing countries. The tail index is kemp with
TS = 5 and TL = 100. The log GDP per capita is in constant international
dollars. Robust standard errors are in parentheses. c p < 0.10, b p < 0.05,
a p < 0.01. Sources: the WBES Employment Indicators and PWT 10.0.

only 0.036, considerably lower than that of the OECD countries, which stands at 0.124 (see

Table A.1). In conclusion, future research are encouraged to utilize comprehensive firm-level

panels to further investigate the relationship between tail index and economic development in

developing countries.

A.3.3 Across time

The primary data source used by Kwon et al. (2024) is the Statistics of Income (SOI) and

the associated Corporation Source Book, both published annually by the IRS. The SOI was

established under the Revenue Act of 1916, which mandates the IRS to report statistics derived

from the tax returns filed each year. Kwon et al. (2024) digitized historical SOI publications

and made the cleaned data series available online at http://businessconcentration.com. In

particular, they provide data on the business share—by assets, receipts, or net income—held

by the top 50%, 10%, 1%, and 0.1% of firms. Among these, the assets data series offers the

most extensive time coverage (1931-2018), followed by receipts (1959-2018) and net income

(1918-1974).

Consistent with the main analysis, I focus on the top 10% of firms to represent the right tail.

Although kf and kemp are not directly applicable due to missing information on size thresholds,

their formulas imply an alternative simple estimator based solely on top firm and employment

7
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shares. Eliminating the term log(TL/TS) yields the following estimator for the tail index:6

1− 1

k
=

log EL
ES

log NL
NS

. (A.1)

In Figure A.3, I plot the time series of the estimated tail index based on equation (A.1),

using NS = 10% and NL = 1% or 0.1%. These results confirm that the right tail in the United

States has been thickening over time. Since k is estimated as a monotonic transformation of

the ratio EL/ES , Figure A.3 also serves as a tail index representation of Figure 2 in Kwon et al.

(2024).
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Figure A.3: Tail index in the US (1918-2018)

Notes. This figure plots the 1918-2018 time series of the estimated tail index based on equation (A.1). I
set NL = 1%, NS = 10% for the left figure and NL = 0.1%, NS = 10% for the right figure. Data source:
Kwon et al. (2024).

A.4 Comparing the estimators

In this section, I compare the tail estimates obtained from the three estimators—kf , kemp, and

kTW . I first show that the main empirical findings in Section 2.2 are robust across all the three

estimators. I then assess the relative performance of the two simple estimators, kf and kemp,

using the Toda–Wang estimator kTW as a benchmark. Finally, I examine how the choice of tail

estimator affects the quantitative exercises in Section 5.

A.4.1 Comparing the results

Figures A.4 and A.5 compare the main results in Section 2.2 for the OECD and U.S. samples

across tail indices estimated using kf , kemp, and kTW . Two observations are immediate. First,

the qualitative patterns are consistent across all estimators: the tail index is negatively associ-

ated with economic development in the OECD sample and declines over calendar time in the

6This estimator is widely used in studies of income and wealth inequality, where only top percentiles
and shares are typically available. In principle, the Toda–Wang estimator is also applicable with three
top thresholds. In practice, however, it produces too many binding estimates (k ≈ 1.001 for many
observations), rendering it unsuitable in this setting.
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U.S. sample. Second, although the tail indices based on kf and kTW are also quantitatively

well aligned, those based on kemp exhibit noticeable departures. In particular, the kemp series

is systematically higher and displays substantially less variation over time.
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Figure A.4: Tail index and log GDP per capita in OECD countries

Notes. This figure plots the tail index k against log GDP per capita for a panel of OECD countries.
The scatter points are adjusted for country fixed effects, and the red lines represent fitted linear trends.
The estimated slopes are β̂f = −0.077(0.015), β̂TW = −0.061(0.018), and β̂emp = −0.028(0.009). The
left and right panels report results using the respective simple estimator kf and kTW with TS = 10 and
TL = 250, while the middle panel reports results using the Toda-Wang estimator kTW with TR = 10.
Log GDP per capita is measured in constant international dollars. The three annotated countries are
Lithuania (LTU, purple), the United Kingdom (GBR, green), and the United States (USA, blue). See
Table A.1 for the complete regression results. Data sources: OECD SBS and PWT 10.0.

The properties of the simple estimator kemp anticipates such departures. First, it is unsur-

prising that the tail indices based on kemp systematically diverge from those based on kf in the

observed direction. Unlike kf , the construction of kemp ensures that the resulting tail estimates

are strictly greater than one, leading to systematically higher values. Second, the time series of

top employment shares is mechanically less volatile than that of top firm shares, as firms near

the threshold have a greater impact on the latter.7 As kemp relies solely on top employment

shares, this property makes its time series inherently less volatile.

More importantly, the construction of kemp implies its inefficiency. Like kf , it relies on

only two size thresholds, rendering it less efficient than the Toda–Wang estimator kTW , which

exploits all top shares in the right tail. Moreover, kemp not only shares the same lower-bound

restriction k > 1 as kTW but also guarantees that estimates remain strictly above one. This

feature makes it at least as restrictive as kTW , if not more so. Consequently, kemp appears

strictly dominated, as it inherits the inefficiency of kf and the restrictiveness of kTW . In what

follows, I present direct evidence on the relative inefficiency of kemp.

7Let Ni(t) and Ei(t) denote the top firm and employment shares at threshold Ti and year t, respec-
tively. Using the U.S. BDS, I find that the variance of logNi(t) over time, Vart(logNi(t)), is roughly
two to four times larger than that of logEi(t), Vart(logEi(t)), across all thresholds during 1978–2019.
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Figure A.5: Tail index in the US (1978-2019)

Notes. This figure plots the tail index k of the U.S. firm size distribution from 1978 to 2019. The
tail indices are estimated using the Toda-Wang estimator, kTW , with TR = 20 (blue), and the simple
estimators kf and kemp, with TS = 20 and TL = 500 (red and yellow). Data source: the U.S. Census
BDS.

A.4.2 Comparing the tail indices

The Toda–Wang estimator is more efficient than the simple estimators whenever it is not bind-

ing. I therefore use it as an efficiency benchmark and compare the tail indices obtained from kf

and kemp with those from kTW , focusing only on observations where kTW does not bind. For

the United States, Figure A.5 shows that no binding cases occur over the sample period. The

tail indices based on kf closely track kTW , while those based on kemp are systematically larger

and notably less volatile, exhibiting significant departures.

For OECD countries, I restrict the sample to country–year pairs where the kTW constraint

does not bind. Figure A.6 plots the tail indices based on kf and kemp against kTW in this

restricted sample. Proximity to the 45-degree line (in red) indicates the degree of alignment.

The figure shows that kemp systematically exceeds kTW , while kf aligns closely with it. The

main exception is Turkey, which produces the cluster of outliers in the upper-left corner of

Figure A.6(a). Regression results confirm this pattern: regressing kf and kemp on kTW yields

coefficients of 1.007 and 0.466, respectively.

The relatively low R2 in the regression of kf on kTW is driven by the Turkish outliers.

Excluding Turkey raises the R2 from 0.456 to 0.811 (Figure A.6(c)), with no remaining out-

liers. By contrast, excluding Turkey barely changes the relationship between kemp and kTW

(Figure A.6(d)), as the R2 remains low—0.221 versus 0.239.

Finally, it is noteworthy that kf produces estimates highly consistent with kTW in both

samples, despite its simplicity. Although kf relies only on two top firm shares, it performs

remarkably well, demonstrating reasonable efficiency and justifying its use as the preferred

estimator for the main analysis. At least for firm size distributions, this comparison between
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(b) kemp vs. kTW , with Turkey
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(c) kf vs. kTW , without Turkey
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Figure A.6: Comparison between kf and kemp: the OECD countries

Notes. These two figures plot the estimates based on kf and kemp against those based on kTW us-
ing OECD samples with and without Turkey. In each figure, the gray dots represent (kTW , kf ) (or
(kTW , kemp)) with kTW on the x-axis, and kf (or kemp) are on the y-axis. Red lines are 45-degree lines.
Source: the OECD SBS.
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kf and kemp seems to suggest that firm shares are more informative about tail behavior than

employment shares.

A.4.3 Testing model predictions with simple estimators

y vs. k
k−1

In Figure A.7, I compare real GDP per capita, y, with k/(k − 1) calculated using

the simple estimators kf and kemp. On the one hand, k/(k−1) based on kemp shows significantly

less growth compared to its counterparts based on kf or kTW , both of which align well with

the growth in y. These discrepancies are expected since the previous analysis has suggested

that changes in employment shares do not accurately capture changes in overall tail behavior:

kemp is systematically higher and less volatile than kTW . The distinction between estimates

targeting firm shares (kf ) and employment shares (kemp) also highlights the importance of using

the Toda–Wang estimator kTW for model–data comparison, as it more accurately captures the

overall tail behavior and better disciplines moment selection.

On the other hand, the correlation coefficient between ln y and ln k/(k − 1) remains consis-

tently high and nearly identical across all tail estimators, suggesting a robust linear relationship

between growth in y and growth in k/(k − 1). Moreover, the differences observed in direct

comparisons between y and k/(k − 1) are primarily driven by variations in the variance of k

estimates. When regressing ln y on ln k/(k − 1), the elasticity of growth in y with respect to

growth in k/(k− 1) is measured by the regression coefficient. Given the almost identical corre-

lation coefficients, the variations in these growth elasticities are explained solely by differences

in the variance of ln k/(k − 1).8

ln(k − 1) vs. t In Figure A.8, I present the time series ln(k − 1) estimated using kf and

kemp, along with their respective linear trends. Similar to Figure 3(b), the linear trends provide

a good fit to the time series. The alignment between the trend and data is further supported

by the high R2 values and correlation coefficients.

8To see this, notice that the regression coefficient α between ln y and ln k/(k − 1) can be expressed
as:

α = Corr(ln y, ln k/(k − 1))

√
Var(ln y)

Var(ln k/(k − 1))
.
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Figure A.7: y vs. k/(k − 1)

Notes. This figure compares the relationship between y and k/(k−1) for the US between 1978 and 2019.
The tail index is estimated respectively by kTW , kf , and kemp. The output per capita is given by the
GDP per capita from FRED. Both data series are in level and normalized with respect to their 1978
level. yx = kx/(kx − 1), for x ∈ {TW, f, emp}. Source: the U.S. Census BDS and FRED.

(a) kf (b) kemp

Figure A.8: ln(k − 1) vs. t

Notes. Both figures compare the time series ln(k − 1) with a linear trend in the U.S. between 1978 and
2019. The tail index is estimated respectively using kf or kemp. The linear trend andR2 for kf or kemp are

obtained from the respective regressions: ln
(
kft − 1

)
= −2.61−0.020t, and ln(kemp

t − 1) = −1.78−0.004t.

Source: the U.S. Census BDS.
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Appendix B Additional analytical results

This section presents additional analytical results for the simple model in Section 3 and the

growth model in Section 4. Proofs omitted from the main text are provided in Section B.5.

B.1 Initial conditions and external learning

In this section, I revisit the tail thickening mechanism in Section 3 within a more general

environment to address two potential concerns. First, while the initial Pareto distribution in

Assumption 1 renders important tractability, it is unclear how general initial conditions affect

the thickening of the right tail. Second, in addition to “internal learning”—that is, learning

from other firms—firms may also innovate by exploring the unknown. Following the seminal

contribution of Kortum (1997), such innovation is typically modeled as the sampling of ideas

from an external source, referred to as “external learning.” It remains an open question how

external learning interacts with internal learning in shaping the evolution of the productivity

distribution’s tail.

To address these concerns, I extend the model in Section 3 to incorporate both Kortum

(1997)’s external learning and general initial distributions. In addition to sampling ideas from

other firms, firms can now randomly sample ideas from a common external source and adopt

those with productivity higher than firms’ current level. One may interpret this external source

as “the universe of ideas” as in Kortum (1997). I denote the productivity distribution of external

ideas by G.

As in Section 3, the arrival rates of ideas—whether from internal or external sources—are

common across firms and exogenously given. Let ηt denote the arrival rate of meetings between

firms and βt the arrival rate of external ideas. The evolution of the productivity distribution is

then given by

∂F (z, t)

∂t
=− ηt [1− F (z, t)]

∫ z

0

f(x, t)

1− F (x, t)
dx− βt [1−G(z)]F (z, t)

=ηt [1− F (z, t)] ln (1− F (z, t))− βt [1−G(z)]F (z, t), (A.2)

where the first item on the right hand side captures firms’ internal learning through truncated

sampling, and the second item captures firms’ external learning through random sampling.

Meanwhile, I introduce the following definition of the tail index for general distributions. A

distribution F has tail index k if

lim
x→∞

ln (1− F (x))

lnx
= −k, where k ∈ R+ ∪ {+∞}. (A.3)

This definition is slightly weaker than the regular variation definition used in Section 6.2, and

the two are equivalent whenever limx→∞
xf(x)
1−F (x) exists. I refer to a distribution as thin-tailed if

k = +∞ and thick-tailed if k < +∞. Distributions with bounded support or exponential decay

are typical examples of thin-tailed distributions, whereas Pareto distributions are representative

thick-tailed cases. I then impose the following assumption on the productivity distributions of
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initial firms and external ideas.

Assumption 2. The initial productivity distribution F (z, 0) and the external source G(z) have

respective tail indices k0 and ke.

Assumption 2 is mild, requiring only that these distributions admit well-defined limits as

productivity approaches infinity. It imposes no restriction on whether the tails are thick or

thin, nor on whether the supports are bounded. Given these generalizations, the following

proposition characterizes the tail index of the productivity distribution at all times.

Proposition A.1. Suppose Assumption 2 holds. If firms’ learning is purely internal, i.e.,

βs = 0 for s ∈ [0, t], then F (z, t) has tail index

k(t) = k0e
−

∫ t
0 ηsds.

If external learning is also present, i.e., βs > 0 for s ∈ [0, t], then

k(t) = min{k0, ke}e−
∫ t
0 ηsds.

Proposition A.1 shows that the tail dynamics derived in the simple model remain robust

along three dimensions. First, the result does not rely on the Pareto assumption for the initial

distribution. With only internal learning, the productivity process in (A.2) reduces to that in

Section 3, and the same expression for k(t) holds for general initial distributions. In particular,

a productivity distribution that begins thin-tailed remains thin-tailed over time.

Second, when external learning is present, a thin-tailed initial distribution can develop a

thickening right tail. Whenever external source has a thick-tailed distribution, the resulting

productivity distribution behaves as if it originated from a thick-tailed initial condition with

tail index min{ke, k0}. Internal learning through truncated sampling then continues to thicken

the tail in the same manner as in the simple model.

Third, the evolution of the tail index is governed entirely by internal learning, regardless

of whether external learning is present. When the productivity distribution is thick-tailed, the

rate of tail thickening, −k̇(t)/k(t), is determined solely by the internal idea arrival rate ηt.

In sum, if the productivity of external ideas follows a thick-tailed distribution, as in Kortum

(1997), the tail dynamics in a model with both internal and external learning and a general

initial productivity distribution are equivalent to those in a model with only internal learning

and a thick-tailed initial distribution. Since the analysis in this paper focuses on tail behavior,

it entails little loss of generality to restrict attention to models with internal learning only and

a thick-tailed initial productivity distribution.

B.2 Idea search with technological choices

In the baseline model of Section 4, the unit search cost is assumed to scale linearly with firm

productivity. This assumption can be microfounded as the equilibrium outcome of firms’ en-

dogenous choices over idea search technologies. In what follows, I formalize firms’ technology
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choices and show that the induced search behavior is observationally equivalent to that assumed

in the baseline model.

Firms face a common set of search technologies but may adjust their choice according to

their own productivity level. Each firm selects a search technology before deciding on its search

intensity. A firm with productivity z faces a continuum of search technologies χz(m) indexed

by efficiency m ∈ [1,+∞). The trade-off in this choice is that a more efficient search technology

increases the probability of meeting high-productivity firms in each search but also requires

more researchers per search. Formally, a search technology is represented by a pair consisting

of a source distribution and a unit search cost:

χz(m) =
{
F (x|x ≥ m),max

{
mχz1−χ,m

}}
,

where χ > 1. The first component specifies the targeting threshold: search technology χz(m)

targets firms with productivity at least m and samples randomly from this set. The second

component defines the unit search cost, i.e., it requires max{mχz1−χ,m} researchers to complete

one such search. Analogous to standard capital adjustment costs, the convexity parameter χ > 1

captures the increasing cost of adopting a search technology more efficient than the firm’s own

productivity level z. Finally, firms never adopt technologies from less productive firms in their

meetings.

This specification is designed to capture two key features. First, it mirrors the spirit of the

truncated sampling assumption: more productive firms have an advantage in meeting top firms.

Second, targeting higher-productivity firms becomes increasingly difficult due to the convexity

of the unit search cost.

With technology choice, the HJB equation for the firm’s value becomes

r(t)v(z, t) =z + ∂tv(z, t)

+max
η≥0

η
[

max
m∈[1,+∞)

{∫ ∞

max{m,z}
[v(x, t)− v(z, t)]dF (x|x ≥ m, t)

−max
{
mχz1−χ,m

}
w(t)

}]
,

(A.4)

with m(z, t) denotes the optimal technological choice. Relative to the baseline case, firms first

select a targeting thresholdm to maximize the expected return from each search and then choose

the search intensity η to maximize the total return. The following proposition characterizes the

optimal targeting threshold:

Proposition A.2. When k0 < χ , m(z, t) = z for all t and z.

Under appropriate parameter restrictions, firms optimally target peers with similar produc-

tivity, i.e., m(z, t) = z, and this policy supports the equilibrium characterized in the baseline

model.
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B.3 The dynamics of equilibrium prices

I discuss here the transition dynamics of two prices, w(t) and r(t), in the equilibrium developed

in Section 4.2. First, the dynamics of interest rate r(t) follows directly from (20):

r(t) = θg(t) + ρ = θ
L

k(t)
+ ρ,

where k(t) = 1 + (k0 − 1)e−Lt. Then, r(t) increases to r∗ = θL+ ρ as the right tail index k(t)

decreases to 1.

Next, I discuss the dynamics of the wage of researchers. Recall that

w(t) =
v(t)

k(t)− 1
, where v(t) =

∫ ∞

t
e−

∫ x
t r(s)dsdx.

As r(t) → r∗, v(t) → 1/r∗, and w(t) ∼ eLt

r(k0−1) . In other words, wage growth follows the output

per capita growth and also converges to L in the limit.

To further characterize wage dynamics, I normalize researchers’ wages by household income.

Formally, the normalized wage is defined as

w̃(t) ≡ w(t)

y(t)
=

w(t)
k(t)
k(t)−1

1
L

=
v(t)L

k(t)
=
g(t)

r̃(t)
, (A.5)

where r̃(t) = 1/v(t). Since 1/r̃(t) =
∫∞
t e−

∫ x
t r̃(t)dsdx, r̃(t) represents the effective average inter-

est rate from time t onward. Hence, the normalized wage is governed by the relative dynamics

between output per capita growth and the average interest rate. The following proposition

characterizes the evolution of the normalized wage.

Proposition A.3. The normalized wage w̃(t) increases to w̃∗ = 1/(ρ/L+ θ) < 1.

Since v(t) → 1/r∗, the long-run normalized wage equals the ratio of the long-run growth rate

(L) to the long-run interest rate (r∗). The monotonicity of w̃(t), however, is less straightforward,

as both the growth rate and the average interest rate increase over time. Recall that the

instantaneous interest rate satisfies r(t) = ρ + θg(t), the sum of the discount rate and a linear

function of the instantaneous growth rate. It follows that r(t) grows more slowly than g(t), so

that g(t)/r(t) increases over time. When t is sufficiently large, the average interest rate r̃(t)

converges to the instantaneous rate r(t), suggesting that the normalized wage g(t)/r̃(t) should

also rise over time. Proposition A.3 confirms that this intuition holds exactly.

Proposition A.3 also has implications for R&D intensity. Since the payment to researchers is

the only expenditure to increase productivity in this model, the normalized wage is equivalent to

the share of R&D expenditure to GDP. The model then predicts a positive relationship between

R&D intensity and the level of economic development.
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B.4 Non-linear idea search costs

I introduce nonlinearity into the cost function of firms’ idea search in the growth model of

Section 4. Specifically, a firm with productivity z must now hire z(η + g(η)) researchers to

achieve a search intensity of η. The adjustment cost function g is twice differentiable and

satisfies limη→0 ηg
′′(η) = 0. Moreover, g is strictly increasing and convex, with g(0) = g′(0) = 0.

I refer to the equilibrium in Section 4.2 as the baseline equilibrium. Below, I show that the

characterization of the baseline equilibrium extends to this case with the adjustment cost.

Solving the equilibrium As in Section 4.2, I first assume that all firms search at the

same intensity and then verify the optimality of this strategy. Suppose η(z, t) = η(t) > 0

for all firms z and t. It follows from Section 3 that the resulting productivity distribution is

F (z, t) = 1− z−k(t) for z ≥ 1, where k̇(t)/k(t) = −η(t) < 0.

Next, I solve for the equilibrium paths of k(t) and η(t). The labor market clearing condition

implies

(η(t) + g(η(t)))
k(t)

k(t)− 1
= L. (A.6)

Since g is strictly increasing, Equation (A.6) yields a unique η(t) for each k(t), defining an

implicit function η(k) rather than the explicit one obtained in the baseline equilibrium. Substi-

tuting η(k) into the law of motion for k(t), k̇(t)/k(t) = −η(t), again gives a first-order ordinary

differential equation in k(t) with initial condition k(0) = k0. Its solution determines the equi-

librium path of k(t) and the associated η(t).

To characterize the equilibrium properties of k(t), note that

k(t) = 1 + (k0 − 1) exp

(
−
∫ t

0
L̃(s)ds

)
, (A.7)

in which L̃(t) = L
1+g(η(t))/η(t) . This expression mirrors Equation (16) in the baseline equilibrium,

except that L̃(t) = L in that case. Since k(t) is decreasing and g′(η) > 0, Equation (A.6) implies

that η(t) declines over time. Moreover, because g(0) = 0 and g′′(η) > 0, the ratio g(η)/η

increases with η. Consequently, L̃(t) rises over time, satisfying L̃(t) ≥ L̃(0) > 0. As the integral

in (A.7) diverges, k(t) converges to 1. Meanwhile, η(t) converges to 0, and L̃(t) converges to L

because limη→0 g(η)/η = g′(0) = 0. Convergence to Zipf’s law is then preserved.

Given the equilibrium path of k(t), output per capita is y(t) = k(t)
k(t)−1

1
L . The corresponding

growth rate is

g(t) = − k̇(t)

k(t) (k(t)− 1)
=
L̃(t)

k(t)
.

Since L̃(t) converges to L, g(t) also converges to its baseline counterpart with limit L. The

equilibrium thus features asymptotic balanced growth. Similarly, the interest rate r(t) = θg(t)+

ρ converges to θL + ρ. The same parametric condition, ρ > (1 − θ)L, guarantees that the

transversality condition holds.
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Lastly, I verify the optimality of the search strategy η(z, t) = η(t). I guess and verify

that a value function of the form v(z, t) = v(t)z solves the firm’s HJB equation and identify

the corresponding w(t) that supports this equilibrium strategy. Suppose v(z, t) = v(t)z. The

expected return from one idea search is then∫ ∞

z
[v(x, t)− v(z, t)]dF (x|x ≥ z, t) =

v(t)z

k(t)− 1
,

Given wage w(t), the first-order condition implies that each firm satisfies

v(t)z

k(t)− 1
= z(1 + g′(η(t)))w(t) ⇒ w(t) =

v(t)

k(t)− 1

1

1 + g′(η(t))
.

Hence, w(t) is independent of z and can be expressed as a function of v(t), k(t), and η(t).

Conversely, the convexity of g ensures that η(t) is the unique optimal search intensity given

v(t), w(t), and k(t).

I now solve for the per-productivity value v(t). The net payoff from idea search under the

optimal choice η(t) is

η(t)

∫ ∞

z
[v(x, t)− v(z, t)]dF (x|x ≥ z, t)− z(η(t) + g(η(t)))w(t)

=
η(t)g′(η(t))− g(η(t))

1 + g′(η(t))
v(t)z

k(t)− 1
,

which is positive (since g is strictly convex) and linear in z. Then v(z, t) = v(t)z satisfies the

firm’s HJB equation if

r(t)v(t) = 1 +
η(t)g′(η(t))− g(η(t))

1 + g′(η(t))
v(t)

k(t)− 1
+ v′(t).

Given known paths for k(t), η(t), and r(t), this is a first-order ordinary differential equation in

v(t), which admits the solution

v(t) =

∫ ∞

t
e−

∫ x
t r̄(s)dsdx,

where

r̄(t) = r(t)− η(t)g′(η(t))− g(η(t))

1 + g′(η(t))
1

k(t)− 1
.
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Moreover, r̄(t) converges to r(t). Using η as shorthand for η(t) and noting that η(t) → 0,

lim
t→0

ηg′(η)− g(η)

1 + g′(η)
1

k(t)− 1
= lim
t→0

ηg′(η)− g(η)

1 + g′(η)
1

(η + g(η))k(t)

(η + g(η))k(t)

k(t)− 1

=L lim
t→0

ηg′(η)− g(η)

1 + g′(η)
1

(η + g(η))k(t)

=L lim
t→∞

1

k(t)(1 + g′(η))
lim
t→∞

ηg′(η)− g(η)

η + g(η)

=L lim
η→0

ηg′′(η)
1 + g′(η)

= 0,

where the second equality follows from the labor market clearing condition, the fourth from

L’Hôpital’s rule, and the last from limη→0 ηg
′′(η) = 0. Therefore, both v(t) and w(t) are finite

and converge to the same limits as in the baseline equilibrium. All equilibrium conditions are

thus satisfied.

Discussions The above equilibrium analysis clarifies two main points. First, the linear search

cost assumption is imposed primarily for analytical tractability. As the construction above

shows, the equilibrium with adjustment costs retains all four key properties of the baseline

equilibrium in Section 4.3. Relative to the baseline case, this equilibrium features a unique

optimal search intensity for each firm but no longer admits closed-form solutions.

Second, while multiple equilibria may exist under linear search costs, the baseline equilibrium

is preferred because it emerges as the limiting case of the equilibrium with adjustment costs.

On one hand, for any equilibrium with the specified adjustment cost, the equilibrium path

converges to that of the baseline model in the long run, since the adjustment cost becomes

negligible as search intensity approaches zero. On the other hand, the baseline equilibrium can

be interpreted as that of a limiting economy in which the adjustment cost approaches zero.9

B.5 Omitted proofs

B.5.1 Proof of Proposition A.1

Proof. With only internal learning, I obtain the same expression for F (z, t) as in Section 3

following the same derivation. It is straightforward to verify that the expression for k(t) remains

valid under the general definition of the tail index in (A.3). I then turn to the case with external

learning. Because it is difficult to compute the tail index of F (z, t) directly, the approach is to

construct upper and lower bounds for F (z, t) and show that these bounding distributions share

the same tail index. The proof proceeds in four steps.

9Although the adjustment cost eliminates equilibrium multiplicity arising from linear search costs,
the resulting equilibrium is not necessarily unique. This construction demonstrates uniqueness only when
the firm’s value function is linear in productivity. Other equilibria may exist in which the HJB equation
admits nonlinear value functions as solutions. Determining whether the equilibrium is unique is beyond
the scope of this paper. It is identified as an open mathematical challenge in Achdou et al. (2014) to
show the uniqueness of a solution of coupled PDE systems (the HJB and the KFE) in idea flow models.
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Step 0: In this step, I construct the lower bound F l(z, t; τ) and F u(z, t) as follows. F l(z, t; τ)

is the solution to the following differential equation:

∂F (z, t)

∂t
=

−βt [1−G(z)]F (z, t), if t ∈ [0, τ ]

ηt [1− F (z, t)] ln (1− F (z, t))− βt [1−G(z)]F (z, t), if t > τ,

with initial distribution F (z, 0), and τ > 0. In words, F l corresponds to the process in which

there is only external learning in the first τ years. It is straightforward that F l(z, t; τ) ≥ F (z, t)

for any z, t and τ . Furthermore, F l(z, t; τ) decreases stochastically in τ .

The upper bound F u(z, t) is the solution to the same differential equation in (A.2) but with

a different initial distribution

F u(z, 0) = F (z, 0)G(z).

Intuitively, F u(z, 0) implies that the initial distribution is the maximum statistics of the internal

and external sources. It follows that it stochastically dominates F (z, 0), a distribution from only

internal source. Since (A.2) implies that ∂F (z, t)/∂t < 0 for any z and t, then F u(z, t) ≤ F (z, t)

for any z and t.

Step 1: In this step, I establish the tail index of F l(z, t; τ) through Lemma A.1 and A.2.

Lemma A.1. F l(z, t; τ) has tail index min{k0, ke} on t ∈ [0, τ ].

Proof. For t ∈ [0, τ ],

∂F l(z, t; τ)

∂t
= −βt [1−G(z)]F l(z, t; τ) ⇒ F l(z, t; τ) = F (z, 0) exp

(
− [1−G(z)]

∫ t

0

βsds

)
.

On the one hand,

1− F l(z, t; τ) = [1−G(z)]

1− F (z, 0)

1−G(z)
+ F (z, 0)

1− exp
(
− [1−G(z)]

∫ t

0
βsds

)
1−G(z)

 (A.8)

= [1− F (z, 0)]

1 + F (z, 0)
1− exp

(
− [1−G(z)]

∫ t

0
βsds

)
1−G(z)

1−G(z)

1− F (z, 0)

 (A.9)

On the other hand,

ln
1− F (z, 0)

1−G(z)
∼ −(k0 − ke) ln z

when z → ∞. Hence, I discuss the cases whenever 1−F (z,0)
1−G(z) is bounded or not.

If it is bounded, it must be k0 ≥ ke. Note that when z → ∞,

F (z, 0)
1− exp

(
− [1−G(z)]

∫ t
0 βsds

)
1−G(z)

→
∫ t

0
βsds.
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(A.8) implies that

lim
z→∞

ln
(
1− F l(z, t; τ)

)
ln z

= lim
z→∞

ln (1−G(z))

ln z
= −ke = −min{k0, ke}.

Conversely, an unbounded 1−F (z,0)
1−G(z) implies that k0 ≤ ke. Notice that

lim
z→∞

ln

{
1 + F (z, 0)

1−exp(−[1−G(z)]
∫ t
0 βsds)

1−G(z)
1−G(z)
1−F (z,0)

}
ln z

= 0. (A.10)

This equation is trivial if 1−G(z)
1−F (z,0) is also bounded. Otherwise, I must have k0 = ke, and

limz→∞
ln
{

1−G(z)
1−F (z,0)

}
ln z = 0. It follows that (A.10) holds from its asymptotic equivalence with

ln
{

1−G(z)
1−F (z,0)

}
ln z . In all cases, (A.9) gives

lim
z→∞

ln
(
1− F l(z, t; τ)

)
ln z

= lim
z→∞

ln (1− F (z, 0))

ln z
= −k0 = −min{k0, ke}.

The proof is then complete. ■

Lemma A.2. For t ≥ τ , lim infz→∞
ln(1−F l(z,t;τ))

ln z ≥ −min{k0, ke}e−
∫ t
τ ηsds.

Proof. For t ≥ τ , the dynamics follows the differential equation (A.2). Rewriting it gives

w′(t) = −ηtw(t) + βtu
(
e−w(t) − 1

)
(A.11)

in which z is fixed and suppressed, w(t) = ln[1 − F (z, t)], and u = 1 − G(z). Then, for any

t > τ ,

w(t) = e−
∫ t
τ ηsdsw(τ) + u

∫ t

τ
e−

∫ t
s ηrdrβs

(
e−w(s) − 1

)
ds.

Substituting G(z) and F l(z, t; τ) into it,

ln
(
1− F l(z, t; τ)

)
ln z

= e−
∫ t
τ
ηsds

ln
(
1− F l(z, τ ; τ)

)
ln z

+
1−G(z)

ln z

∫ t

τ

e−
∫ t
s
ηrdrβs

F l(z, s; τ)

1− F l(z, s; τ)
ds.

Then,

lim inf
z→∞

ln
(
1− F l(z, t; τ)

)
ln z

≥ lim
z→∞

e−
∫ t
τ
ηsds

ln
(
1− F l(z, τ ; τ)

)
ln z

= −min{ke, k0}e−
∫ t
τ
ηsds

■

Step 2: In this step, I establish the tail index of the upper bound F u(z, t) in Lemma A.3.

Lemma A.3. F u(z, t) has tail index min{k0, ke}e−
∫ t
0 ηsds.
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Proof. It follows from the previous proof that

ln (1− Fu(z, t))

ln z
= e−

∫ t
0
ηsds

ln (1− Fu(z, 0))

ln z
+

1−G(z)

ln z

∫ t

0

e−
∫ t
s
ηrdrβs

Fu(z, s)

1− Fu(z, s)
ds. (A.12)

First, notice that

ln (1− F u(z, 0))

ln z
=

ln [1− F (z, 0) + F (z, 0) (1−G(z))]

ln z
.

The same arguments that prove Lemma A.1 apply to show that F u(z, 0) has tail index min{ke, k0}.
Next, (A.12) implies that

lim inf
z→∞

ln (1− F u(z, t))

ln z
≥ lim

z→∞
e−

∫ t
0 ηsds

ln (1− F u(z, 0))

ln z
= −min{ke, k0}e−

∫ t
0 ηsds

Alternatively, Fu(z,s)
1−Fu(z,s) decreases on s since F u(z, s) decreases on s. Then,

ln (1− Fu(z, t))

ln z
≤ e−

∫ t
0
ηsds

ln (1− Fu(z, 0))

ln z
+
Fu(z, 0)

ln z

1−G(z)

1− Fu(F, 0)

∫ t

0

e−
∫ t
s
ηrdrβsds.

By construction, 1− F u(z, 0) > 1−G(z). Then, for any t,

F u(z, 0)

ln z

1−G(z)

1− F u(F, 0)

∫ t

0
e−

∫ t
s ηrdrβsds = O

(
1

ln z

)
= o(1)

at z = ∞. Consequently,

lim sup
z→∞

ln (1− F u(z, t))

ln z
≤ e−

∫ t
0 ηsds lim

z→∞
ln (1− F u(z, 0))

ln z
= −min{ke, k0}e−

∫ t
0 ηsds.

Combining both bounds, I conclude that

lim
z→∞

ln (1− F u(z, t))

ln z
= −min{ke, k0}e−

∫ t
0 ηsds.

■

Step 3: I return to the tail index of F (z, t) in this last step. From Lemma A.1 and A.2, I

obtain that

lim inf
z→∞

ln (1− F (z, t))

ln z
≥ lim inf

z→∞
ln
(
1− F l(z, t; τ)

)
ln z

≥ −min{k0, ke}e−
∫ t
τ ηsds

Since τ is arbitrary,

lim inf
z→∞

ln (1− F (z, t))

ln z
≥ −min{k0, ke}e−

∫ t
0 ηsds.

Conversely, Lemma A.3 implies that

lim sup
z→∞

ln (1− F (z, t))

ln z
≤ lim

z→∞
ln (1− F u(z, t))

ln z
= −min{ke, k0}e−

∫ t
0 ηsds.
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The proof is complete by combining these two bounds. ■

B.5.2 Proof of Proposition A.2

Proof. I show that m(z, t) = z is consistent with the baseline equilibrium, where productivity

distribution F (z, t) is a Pareto distribution with varying tail index k(t), and value function

v(z, t) = v(t)z. I verify that those properties imply a policy function m(z, t) = z and are

preserved under such policy. Note first that∫ ∞

max{m,z}
(v(x, t)− v(z, t))dF (x|x > m, t)

=
v(t)

1− F (m, t)

∫ ∞

max{m,z}
(x− z)dF (x, t)

=
v(t)

1− F (m, t)

[
(max{m, z} − z) [1− F (max{m, z}, t)] +

∫ ∞

max{m,z}
[1− F (x, t)] dx

]

Using that F (z, t) = 1 − z−k(t) for z ≥ 1, I obtain that for m < z, the above equation reduces

into

v(t)

∫∞
z [1− F (x, t)] dx

1− F (m, t)
=

v(t)

k(t)− 1

z1−k(t)

m−k(t)

As in the baseline equilibrium, let the equilibrium wage be w(t) = v(t)
k(t)−1 . The net return of

one search with search technology m < z is then

v(t)

k(t)− 1

z1−k(t)

m−k(t) −mw(t) =
v(t)

k(t)− 1

(
z1−k(t)

m−k(t) −m

)
< 0,

where the negative sign comes from m < z and k(t) > 1. Therefore, I verify that search

technology m < z is dominated by search technology z, under which the return is zero.

Now I consider the case m > z. The payoff of each search is given by

v(t)

1− F (m, t)

[
(m− z) [1− F (m, t)] +

∫ ∞

m
[1− F (x, t)] dx

]
= v(t)

[
(m− z) +

m

k(t)− 1

]
.

The net return is then

v(t)

[
(m− z) +

m

k(t)− 1

]
−mχz1−χw(t) = v(t)

[
m− z +

m−mχz1−χ

k(t)− 1

]
.

Consider the function h(m, z, t) = m− z + m−mχz1−χ

k−1 . Note that

hm(m, z, t) = 1 +
1

k − 1

(
1− χ

(m
z

)χ−1
)
< 1 +

1− χ

k − 1
=
k − χ

k − 1

for all m > z. With k0 < χ and k(t) ≤ k0, I know that hm(m, z, t) < 0 for all m > z and t.

Hence, h(m, z, t) < h(z, z, t) = 0. That is, firms also do not choose search technology m > z.

In sum, I have verified that firmsm(z, t) = z will be the dominant technological choice, which
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also implies that the expected return per search is zero. Hence, firms will still be indifferent

across the search intensity. The baseline equilibrium is then supported. ■

B.5.3 Proof of Proposition A.3

Proof. Recall from (A.5) that the normalized wage satisfies that

w̃(t) =
v(t)L

k(t)
=

L

k(t)

∫ ∞

t
e−

∫ x
t r(s)dsdx.

Noticing that r(t) = θ L
k(t) + ρ from the Euler equation, and k̇

k−1 = −L,

∫ x

t
r(s)ds =

∫ x

t
θ

(
k̇(s)

k(s)
+ L

)
+ ρds = θ ln

k(x)

k(t)
+ (ρ+ θL) (x− t).

Therefore,

v(t)L

k(t)
=

L

k(t)

∫ ∞

t
e
−θ ln k(x)

k(t)
−(ρ+θL)(x−t)

dx =
L

k(t)

∫ ∞

t

(
k(x)

k(t)

)−θ
e−(ρ+θL)(x−t)dx.

With k(x+ s) = 1 + (k(x)− 1)e−Ls,∫ ∞

t

k(x)−θe−(ρ+θL)(x−t)dx =

∫ ∞

0

(
1 + (k(t)− 1)e−Ls

)−θ
e−(ρ+θL)sds, Sub. (s = x− t)

=
1

L

∫ 1

0

(1 + (k(t)− 1)q)
−θ
q

ρ
L+θ−1dq, Sub. (q = e−Ls)

=
1

L (k(t)− 1)
ρ
L+θ

∫ k(t)

1

p−θ(p− 1)
ρ
L+θ−1dp, Sub. (p = 1 + (k(t)− 1)q)

=
1

L (k(t)− 1)
ρ
L+θ

∫ 1− 1
k(t)

0

y
ρ
L+θ−1(1− y)−

ρ
L−1dy. Sub. (y = 1− 1

p
)

Plugging it back and suppressing time variable t, the normalized wage is a function of k:

w̃(k) =
v(t)L

k(t)
=

kθ−1

(k − 1)
ρ
L+θ

∫ 1− 1
k

0

y
ρ
L+θ−1(1− y)−

ρ
L−1dy =

kν

(k − 1)ν+α

∫ 1− 1
k

0

yν+α−1(1− y)−αdy,

in which ν = θ − 1 > −1 and α = ρ
L + 1 > 1. The parametric condition ρ > L(1 − θ) implies

that ν +α > 1. To see that the research share increases over time, it suffices to show that w̃(k)

decreases on k. Differentiating it with respect to k,

w̃′(k) =
kν

(k − 1)ν+α

{[
ν

k
− ν + α

k − 1

] ∫ 1− 1
k

0

yν+α−1(1− y)−αdy +

(
1− 1

k

)ν+α−1(
1

k

)2−α
}
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Noting that the integral term is an incomplete Beta function B1− 1
k
(ν + α, 1 − α), it has the

following hypergeometric representation.10

∫ 1− 1
k

0
yν+α−1(1− y)−αdy =

(
1− 1

k

)ν+α ( 1
k

)1−α
ν + α

F (ν + 1, 1; ν + α+ 1; 1− 1

k
),

in which F is a hypergeometric function such that

F (ν + 1, 1; ν + α+ 1; 1− 1

k
) =

Γ(ν + α+ 1)

Γ(ν + 1)

∞∑
s=0

Γ(ν + 1 + s)

Γ(ν + α+ 1 + s)

(
1− 1

k

)s
.

Then, [
ν

k
− ν + α

k − 1

] ∫ 1− 1
k

0
yν+α−1(1− y)−αdy +

(
1− 1

k

)ν+α−1(1

k

)2−α

=

(
1− 1

k

)ν+α(1

k

)1−α [( ν

ν + α

1

k
− 1

k − 1

]
F +

(
1− 1

k

)−1 1

k

]

=

(
1− 1

k

)ν+α(1

k

)1−α 1

k − 1

(
1 +

ν

ν + α

(
1− 1

k

)
F − F

)

Furthermore,

1 +
ν

ν + α

(
1− 1

k

)
F (ν + 1, 1; ν + α+ 1; 1− 1

k
)

=1 +
ν

ν + α

(
1− 1

k

)
Γ(ν + α+ 1)

Γ(ν + 1)

∞∑
s=0

Γ(ν + 1 + s)

Γ(ν + α+ 1 + s)

(
1− 1

k

)s
,

=1 +
Γ(ν + α)

Γ(ν)

∞∑
s=0

Γ(ν + 1 + s)

Γ(ν + α+ 1 + s)

(
1− 1

k

)s+1

,

=
Γ(ν + α)

Γ(ν)

∞∑
s=0

Γ(ν + s)

Γ(ν + α+ s)

(
1− 1

k

)s
= F (ν, 1; ν + α; 1− 1

k
).

Then, given that α > 0,

F (ν, 1; ν + α; 1− 1

k
)− F (ν + 1, 1; ν + α+ 1; 1− 1

k
)

=

∞∑
s=0

(
Γ(ν + α)

Γ(ν)

Γ(ν + s)

Γ(ν + α+ s)
− Γ(ν + α+ 1)

Γ(ν + 1)

Γ(ν + 1 + s)

Γ(ν + α+ 1 + s)

)(
1− 1

k

)s
,

=

∞∑
s=1

Γ(ν + α+ 1)

Γ(ν + 1)

Γ(ν + s)

Γ(ν + α+ s)

(
v

v + α
− v + s

v + α+ s

)(
1− 1

k

)s
,

=

∞∑
s=1

Γ(ν + α+ 1)

Γ(ν + 1)

Γ(ν + s)

Γ(ν + α+ s)

−αs
(v + α)(v + α+ s)

(
1− 1

k

)s
< 0.

10See, for example, equation (11.34) in chapter 11 of Temme (1996).
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In sum,

w̃′(k) =
kν

(k − 1)ν+α

(
1− 1

k

)ν+α(1

k

)1−α 1

k − 1

(
1 +

ν

ν + α

(
1− 1

k

)
F − F

)
,

=
1

k(k − 1)

(
F (ν, 1; ν + α; 1− 1

k
)− F (ν + 1, 1; ν + α+ 1; 1− 1

k
)

)
< 0.

Thus, w̃ increases over time as k(t) is decreasing to one. Using the same representation results,11

w̃(k) =
kν

(k − 1)ν+α

(
1− 1

k

)ν+α ( 1
k

)1−α
ν + α

F (ν + 1, 1; ν + α+ 1; 1− 1

k
),

=
1

ν + α

1

k
F (ν + 1, 1; ν + α+ 1; 1− 1

k
).

As k → 1, F (ν + 1, 1; ν + α+ 1; 1− 1
k ) → 1. Then, with again ρ > L(1− θ),

w̃(t) → w̃∗ =
1

ρ/L+ θ
< 1.

Besides, note that both F (ν + 1, 1; ν + α + 1; 1 − 1
k ) and 1/(ν + α) decrease on α. Then,

w̃(k;α) decreases on α for all k > 1. An increase in L lowers α and increases w̃(k;α) . ■

11One can also obtain the same w̃′(k) from here, but the computation will be much harder.
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Appendix C Additioanl results for policies

C.1 Proof of Proposition 2

Proof. Consider the policy in Section 6.1 that firms with productivity below z∗ face a search

tax of τ ≥ 0. Obviously, τ = 0 corresponds to the tax-free economy in Section 4. I show that

the following search strategy η(z, t) constitutes an equilibrium under this policy. Namely,

η(z, t) =

 0, if z < z∗,

η(t), if z ≥ z∗.
(A.13)

In words, firms with productivity below z∗ do not search, and those with productivity above z∗

search at the same intensity η(t).

To begin with, it is straightforward that F (z, t) = F (z, 0) for all z < z∗ and t since there

are no actions for firms in this region, and firms above z∗ will not drop into this region. For the

part that is above the threshold, I substitute the search strategy in (A.13) into the KFE (12)

of the productivity distribution in Section 4 and obtain that

∂F̃ (z, t)

∂t
= F̃ (z, t)η(t)

∫ z

z∗

f(x, t)

F̃ (x, t)
dx⇒ ∂ ln F̃ (z, t)

∂t
= −η(t) ln

(
F̃ (z, t)

F̃ (z∗, t)

)
.

Similar to Section 3, I derive a first-order linear ODE in variable ln F̃ (z, t) − ln F̃ (z∗, 0) using

F̃ (z∗, t) = F̃ (z∗, 0). Analogously, it has the solution

ln

(
F̃ (z, t)

F̃ (z∗, 0)

)
= ln

(
F̃ (z, 0)

F̃ (z∗, 0)

)
exp

(
−
∫ t

0
η(s)ds

)
.

Using the initial condition F (z, 0) = 1− z−k0 ,

F̃ (z, t) = F̃ (z∗, 0)
( z
z∗

)−k(t)
= (z∗)k(t)−k0z−k(t), (A.14)

where k(t) = k0 exp
(
−
∫ t
0 η(s)ds

)
, or equivalently, k̇(t)/k(t) = −η(t).

Next, I solve for η(t) from labor market clearing condition. With both (A.14) and (A.13),

η(t)

∫ ∞

z∗
yf(y, t)dy = L⇒ η(t)

k(t)

k(t)− 1
= L(z∗)k0−1.

Combining it with k̇(t)/k(t) = −η(t), I obtain the equilibrium k(t) under threshold z∗:

− k̇(t)

k(t)− 1
= L(z∗)k0−1 ⇒ k(t) = 1 + (k0 − 1) exp

(
−L(z∗)k0−1t

)
.
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(23) in the proposition then follows from (A.14). Moreover,

y(t) =

∫ ∞

1
zdF (z, t) =

k0
k0 − 1

[
1− (z∗)1−k0

]
+

k(t)

k(t)− 1
(z∗)1−k0 .

Therefore, ẏ(t)/y(t) → L(z∗)k0−1. While small firms never grow, the aggregate economy benefits

from the faster growth among large firms.

Finally, I verify the optimality of the strategy in (A.13). With tax, the HJB equation (8)

becomes

r(t)v(z, t) = z +max
η

η

{∫ ∞

z
[v(x, t)− v(z, t)] dF (x|x ≥ z, t)− z(1 + τ(z))w(t)

}
+ ∂tv(z, t),

in which τ(z) = τ1{z < z∗}. As argued in Section 4.2, the equilibrium net payoff per idea

search S(z, t) must be non-positive:

S(z, t) =

∫ ∞

z
[v(x, t)− v(z, t)] dF (x|x ≥ z, t)− z(1 + τ(z))w(t) ≤ 0.

The same strategy shows that in equilibrium, value function v(z, t) = v(t)z, where

v(t) =

∫ ∞

t
e−

∫ x
t r(s)dsdx,

with r(t) the equilibrium interest rate determined by output growth. Given w(t) = v(t)/(k(t)−
1) and F (z, t) in (23), I show that S(z, t) ≤ 0 for z < z∗ and S(z, t) = 0 for z ≥ z∗ to justify

the search intensity η(z, t). Note that

S(z, t) = v(t)z

{∫ ∞

z

x

z
dF (x|x ≥ z, t)− k(t) + τ(z)

k(t)− 1

}
,

it then suffices to compare the value of the integral with k(t)+τ(z)
k(t)−1 . For z < z∗,

∫ ∞

z

x

z
dF (x|x ≥ z, t) =

1

z[1− F (z, t)]

∫ ∞

z
xdF (x, t),

=
1

z1−k0

{∫ z∗

z
k0x

−k0dx+ (z∗)k(t)−k0
∫ ∞

z∗
k(t)x−k(t)dx

}
,

=
1

z1−k0

{
k0

k0 − 1

[
z1−k0 − (z∗)1−k0

]
+ (z∗)k(t)−k0

k(t)

k(t)− 1
(z∗)1−k(t)

}
,

=
k0

k0 − 1

[
1−

(
z∗

z

)1−k0
]
+

k(t)

k(t)− 1

(
z∗

z

)1−k0
,

≤ k(t)

k(t)− 1
≤ k(t) + τ

k(t)− 1
.

where the inequality follows that (z∗/z)1−k0 < 1, k(t) ≤ k0, and τ ≥ 0. The equality holds only

if t = 0 and τ = 0, i.e., at the initial date in a tax-free economy. When τ > 0, firms below

z∗ never find it optimal to search at or after t = 0, whereas without tax, they can search at

t = 0, leading to a path in which they can always search as in the baseline equilibrium. Hence,
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taxation operates off the equilibrium to discourage low-productivity firms to search.

For z ≥ z∗, the truncated distribution F (x|x ≥ z, t) is exactly Pareto with tail index k(t)

and has mean zk(t)/(k(t)− 1). Then, S(z, t) = 0 with τ(z) = 0. The optimality of this search

strategy is thus confirmed.

I conclude the proof by discussing the special case τ = 0. Since the above proof holds for

τ = 0, the tax-free economy in Section 4 admits a set of equilibria supported by the above search

strategy for all thresholds z∗ ∈ [1,+∞). This construction further illustrates the equilibrium

multiplicity arising from the linear search cost. ■

C.2 Solving the planner’s problem

To solve the planner’s problem (24), I work with w(f, z), which is the Gateaux derivative of

W (f) at point z with a Dirac delta function as increment.12 w(f, z) is then the marginal social

value of a firm z with aggregate state f . Moreover, let w(z, t) ≡ w(f(·, t), z). w(z, t) is then the

marginal social value along the trajectory of the productivity distribution f(z, t), which results

from the optimal policies. I show that w(z, t) satisfies the following partial differential equation

and leave the derivations into Section C.2.2:

ρw(z, t) = λ̂z +
∂w(z, t)

∂t
+max

η

{
η

∫ ∞

z
[w(y, t)− w(z, t)]

f(y, t)

1− F (z, t)
dy − µ̂zη

}
+

∫ ∞

0

{
w(y, t)

∫ min {y,z}

0
η∗(x, t)

−φ(x, t)
1− F (x, t)

dx+ w(z, t)

∫ z

0
η∗(x, t)φ(x, t)dx

}
f(y, t)dy,

(A.15)

in which φ(x, t) = f(x, t)/(1 − F (x, t)), λ̂ and µ̂ are the respective Lagrangian multipliers of

the goods and labor market clearing conditions.

Equation (A.15) is the counterpart of HJB equation (8) for the social planner. The LHS is

the flow social value of firm z based on the discounting factor ρ rather than the interest rate rt.

Three items on the RHS compose this flow value. The first item is the value of static output

with λ̂ the shadow price of the output in utility. The second item is the option value which is

the sum of an incremental change, ∂w(z, t)/∂t, and the net return of idea searches. The third

and additional item that only shows up in the social planner’s HJB equation is the last term in

(A.15), capturing the externality of other firms’ learning. The conditional source distribution

makes the externality term very complicated since any firm can affect others in various ways.

To see this, consider an increase in the density f(z) and a firm y with y < z. The density of

the source distribution facing by firm y is f(x)
1−F (y) for x ≥ y. An increase in the portion of firm

z increases the likelihood for firm y to meet a firm z. Yet it also decreases the likelihood of

meeting other firms x with x ̸= z, which could also benefit firm y.

12Formally,

w(f, z) ≡ δW (f)

δf(z)
= lim

α→0

W (f + αδz)−W (f)

α
=

d

dα
W (f + αδz)|α=0,

in which α is a real scalar, and δz(x) = δ(x− z) with δ the Dirac delta function.
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In the following, I solve the policy function associated with HJB equation (A.15) to obtain

Proposition 3.

C.2.1 Proof of Proposition 3

Proof. To solve for the optimal policy, I first differentiate equation (A.15) with respect to z.

ρwz(z, t) =
∂wz(z, t)

∂t
+ λ̂+ η∗(z, t)

∂

∂z

{∫ ∞

z

[w(y, t)− w(z, t)]
f(y, t)

1− F (z, t)
dy − µ̂z

}
+w(z, t)f(z, t)

∫ z

0

η∗(x, t)
−φ(x, t)

1− F (x, t)
dx− w(z, t)f(z, t)

∫ z

0

η∗(x, t)
−φ(x, t)

1− F (x, t)
dx

+

∫ ∞

z

w(y, t)f(y, t)dyη∗(z, t)
−φ(z, t)

1− F (z, t)
+ wz(z, t)

∫ z

0

η∗(x, t)φ(x, t)dx+ w(z, t)η∗(z, t)φ(z, t)

=
∂wz(z, t)

∂t
+ λ̂− η∗(z, t)φ(z, t)

∫ ∞

z

(w(y, t)− w(z, t))
f(y, t)

1− F (z, t)
dy + wz(z, t)

∫ z

0

η∗(x, t)φ(x, t)dx

=
∂wz(z, t)

∂t
+ λ̂− µ̂η∗(z, t)φ(z, t)z + wz(z, t)

∫ z

0

η∗(x, t)φ(x, t)dx (A.16)

The first equality is the result of an envelope theorem, and the second and the third use the first

order condition (A.19), which holds for all z at any time t. Let k(z, t) = zf(z, t)/(1− F (z, t)),

I obtain wz(z, t) and ∂wz(z, t)/∂t by differentiating (A.19):

wz(z, t) = µ̂ (k(z, t)− 1) ,

∂wz(z, t)

∂t
= ˙̂µ(k(z, t)− 1) + µ̂

∂k(z, t)

∂t
= ˙̂µ(k(z, t)− 1)− µ̂η∗(z, t)φ(z, t)z,

in which the last equality comes from the law of motion on φ(z, t). Formally, the original law

of motion (12) implies that by differentiating both sides on z,

∂ ln(1− F (z, t))

∂t
=

∫ z

0
η(x, t)

f(x, t)

1− F (x, t)
dx =⇒ ∂φ(z, t)

∂t
= −η(z, t)φ(z, t).

Inserting them back to (A.16), the following differential equation characterizes the optimal

policy.

ρµ̂ (k(z, t)− 1) = ˙̂µ(k(z, t)− 1) + λ̂− 2µ̂η∗(z, t)φ(z, t)z + µ̂ (k(z, t)− 1)

∫ z

0
η∗(x, t)φ(x, t)dx

⇒

(
ρ−

˙̂µ

µ̂

)
(1− k(z, t)) +

λ̂

µ̂
= (1− k(z, t))

∫ z

0
η∗(x, t)φ(x, t)dx+ 2η∗(z, t)φ(z, t)z.

Fixing time t, this is a first order linear ordinary differential equation in
∫ z
0 η

∗(y, t)φ(y, t)dy,

so it can be solved analytically. It admits the following solution:

∫ z

0
η∗(y, t)φ(y, t)dy = e−

∫ z
0

1−k(x,t)
2x

dx

∫ z

0

1

2y
e
∫ y
0

1−k(x,t)
2x

dx

{(
ρ−

˙̂µ

µ̂

)
[1− k(y, t)] +

λ̂

µ̂

}
dy

=
[
e
∫ z
0

k(x,t)−1
2x

dx − 1
]( ˙̂µ

µ̂
− ρ

)
+
λ̂

µ̂
e
∫ z
0

k(x,t)−1
2x

dx

∫ z

0

1

2y
e
∫ y
0

1−k(x,t)
2x

dxdy
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Given this solution, the above ODE gives η∗(z, t):

η∗(z, t) =
k(z, t)− 1

2k(z, t)

{∫ z

0
η∗(y, t)φ(y, t)dy +

˙̂µ

µ̂
− ρ

}
+
λ̂

µ̂

1

2k(z, t)

=
k(z, t)− 1

2k(z, t)
e
∫ z
0

k(x,t)−1
2x

dx

{(
˙̂µ

µ̂
− ρ

)
+
λ̂

µ̂

∫ z

0

1

2y
e
∫ y
0

1−k(x,t)
2x

dxdy

}
+
λ̂

µ̂

1

2k(z, t)

If F (z, t) has tail index k(t) > 1, limz→∞ k(z, t) = k(t). The Karamata’s Representation

Theorem implies that e
∫ z
0

k(x,t)−1
2x

dx is a regularly varying function with exponent (k(t) − 1)/2.

Furthermore,
∫ z
0

1
2ye

∫ y
0

1−k(x,t)
2x

dxdy converges as z → ∞. η∗(z, t) is then a regularly varying

function with exponent (k(t)− 1)/2, i.e.,

η∗(z, t) = z
k(t)−1

2 L(z, t)

in which L(z, t) is a slowly varying function. With a Pareto initial distribution, k(z, 0) = k0 for

z ≥ 1, and

η∗(z, 0) =

[(
˙̂µ

µ̂
− ρ

)
+
λ̂

µ̂

1

k0 − 1

]
k0 − 1

2k0
z

k0−1
2 ,

a power function. The proof is then complete.

■

C.2.2 Derivation of Equation (A.15) on w(z, t)

Following Lucas and Moll (2014), the corresponding HJB equation of problem (24) is

ρW (f) = max
{c(ω),η(y)}

Lu(c) +

∫ ∞

0

δW (f)

δf(y)
f(y)

[∫ y

0
η(x)φ(x)dx− η(y)

]
dy

s.t. Lc ≤
∫ ∞

0
yf(y)dy,

∫ ∞

0
yη(y)f(y)dy ≤ L,

(A.17)

in which φ(x) = f(x)/(1−F (x)). λ̂ and µ̂ are the respective Lagrangian multipliers on the goods

and labor market clearing conditions. Let w(f, z) = δW (f)/δf(z). The first order condition on

consumption gives us

u′(c) = λ̂. (A.18)

The first order condition on the search intensity η(z) implies that∫ ∞

z
w(f, y)f(y)φ(z)dy − w(f, z)f(z)− µ̂zf(z) = 0

=⇒
∫ ∞

z
[w(f, y)− w(f, z)]

f(y)

1− F (z)
dy = µ̂z (A.19)
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Differentiating both sides of the HJB equation (A.17) with respect to f(z),

ρw(f, z) =

∫ ∞

0

δw(f, z)

δf(y)
f(y)

[∫ y

0
η∗(x)φ(x)dx− η∗(y)

]
dy

+

∫ ∞

0
w(f, y)

δ

δf(z)

{
f(y)

[∫ y

0
η∗(x)φ(x)dx− η∗(y)

]}
dy + λ̂z − µ̂zη∗(z).

(A.20)

Let w(z, t) ≡ w(f(·, t), z), then

∂w(z, t)

∂t
=

∫ ∞

0

∂w(z, f(·, t))
∂f(y, t)

∂f(y, t)

∂t
dy =

∫ ∞

0

δw(f, z)

δf(y)
f(y)

[∫ y

0
η∗(x)φ(x)dx− η∗(y)

]
dy

with f(·, t) = f . Hence, the first term on the RHS of (A.20) is simply ∂w(z, t)/∂t. To calculate

the second term, note that

δφ(y)

δf(z)
=


− f(y)

[1−F (y)]2
if y < z,

1
1−F (y) −

f(y)
[1−F (y)]2

if y = z,

0 if y > z.

Therefore,

δ

δf(z)
f(y)

[∫ y

0
η∗(x)φ(x)dx− η∗(y)

]
=



−f(y)
∫ y
0 η

∗(x) φ(x)
1−F (x)dx if y < z,∫ z

0 η
∗(x)φ(x)dx− η∗(z)

+f(z)
[
−
∫ z
0 η

∗(x) φ(x)
1−F (x)dx+ η∗(z)

1−F (z)

]
if y = z,

f(y)
[
−
∫ z
0 η

∗(x) φ(x)
1−F (x)dx+ η∗(z)

1−F (z)

]
if y > z.

Then,∫ ∞

0
w(f, y)

δ

δf(z)

{
f(y)

[∫ y

0
η∗(x)φ(x)dx− η∗(y)

]}
dy

=

∫ z

0
w(f, y)f(y)

∫ y

0
η∗(x)

−φ(x)
1− F (x)

dxdy +

∫ ∞

z
w(f, y)f(y)

[∫ z

0
η∗(x)

−φ(x)
1− F (x)

dx+
η∗(z)

1− F (z)

]
dy

+ w(f, z)

[∫ z

0
η∗(x)φ(x)dx− η∗(z)

]
=

∫ ∞

0

{
w(f, y)

∫ min {y,z}

0
η∗(x)

−φ(x)
1− F (x)

dx+ w(f, z)

∫ z

0
η∗(x)φ(x)dx

}
f(y)dy

+ η∗(z)
∫ ∞

z
[w(f, y)− w(f, z)]

f(y)

1− F (z)
dy

Finally, rewriting (A.20) gives equation (A.15):

ρw(z, t) =
∂w(z, t)

∂t
+ λ̂z +max

η

{
η

∫ ∞

z
[w(y, t)− w(z, t)]

f(y, t)

1− F (z, t)
dy − µ̂zη

}
+

∫ ∞

0

{
w(y, t)

∫ min {y,z}

0
η∗(x, t)

−φ(x, t)
1− F (x, t)

dx+ w(z, t)

∫ z

0
η∗(x, t)φ(x, t)dx

}
f(y, t)dy,
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in which the max operator comes from first order condition (A.19).

C.2.3 The tail dynamics with optimal search policy

Figure A.9 illustrates the jumps in tail index with optimal search policy.

k0

k0+1
2

1 + k0−1
2n k = 1

t0 t
(1)
0 t

(2)
0 t

(n)
0

t+0
t

k

Figure A.9: Illustration of jumps in tail indices

Notes. Given an initial tail index k0, the tail index is 1 + k0−1
2 after n jumps. It converges to one in

countably many steps, which take zero measure of time.

C.3 Bounded arrival rate

Given an upper bound on the arrival rate η̄, the social planner chooses z∗(t) such that only

firms above z∗(t) are active in search, and they search at the maximum intensity η̄. Meanwhile,

z∗(t) is chosen such that researchers are fully employed by the search-active firms, i.e.,

η̄

∫ ∞

z∗(t)
zf(z, t)dz = L.

It worths noting that Proposition 4 for the extended model characterizes similar search

activities and holds for arbitrary paths of z∗(t) and η(t). Hence, the resulting productivity

distribution follows directly from Proposition 4 with gE(t) = 0 and η(t) = η̄. Namely,

F (z, t) =

1− (1− F ∗(t))
(

z
z∗(t)

)−kt
, if z ≥ z∗(t),

F ∗(T ∗(z)), if z < z∗(t).
(A.21)

in which T ∗(z) is the inverse of z∗(t), gz(t) ≡ ż∗(t)/z∗(t),

(F ∗)′(t) = k(t)gz(t) (1− F ∗(t)) , and
k̇(t)

k(t)
= −η̄. (A.22)
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Next, I pin down the path of z∗(t). Substituting (A.21) into the labor market clearing

condition,

[1− F ∗(t)] z∗(t)
k(t)

k(t)− 1
η̄ = L. (A.23)

Log differentiating the above equation, I obtain

gz(t) =
(F ∗)′(t)
1− F ∗(t)

+
k̇(t)

k(t)(k(t)− 1)
= gz(t)k(t)−

η̄

k(t)− 1
⇒ gz(t) =

η̄

(k(t)− 1)2
, (A.24)

where the second equality uses Equation (A.22). Hence, at time T = ln(k0)/η̄, k(T ) = 1,

gz(T ) = z∗(T ) = ∞, and F ∗(T ) = 1.

Finally, I show that the total output reaches infinity at time T . Using integration by parts,∫ z∗(t)

1
zf(z, t)dz =

∫ z∗(t)

1
[1− F (z, t)] dz + 1− [1− F ∗(t)]z∗(t).

When t → T , k(t) → 1, and (A.23) implies that [1 − F ∗(t)]z∗(t) → 0. It then suffices to show

that the first integral diverges as t→ T . Notice that∫ z∗(t)

1
[1− F (z, t)] dz =

∫ z∗(t)

1
[1− F ∗(T ∗(z))] dz =

∫ t

0
[1− F ∗(s)] z∗(s)gz(s)ds,

where the first equality follows (A.21) and the second the substitution z = z∗(s). Using (A.23)

and (A.24),∫ t

0
[1− F ∗(s)] z∗(s)gz(s)ds =

∫ t

0

L

η̄

k(s)− 1

k(s)

η̄

(k(s)− 1)2
ds = L

∫ t

0

1

k(s) (k(s)− 1)
ds.

When t→ T , k(t) → 1, and the integral diverges.

C.4 Generalized learning function

In this section, I extend the learning process in the baseline model in Section 4 with imperfect

adoption. Similarly, firms still target other more productive firms. Whereas upon meeting other

firms, they are not guaranteed to replicate the other’s technology. Specifically, the probability

of adoption depends on the relative ranking between the searching and meeting firms. If the

searching firm has productivity x and the meeting firm has productivity y (y > x), then the

probability of adoption for the searching firm is(
1− F (y, t)

1− F (x, t)

)λ
,

where λ ≥ 0. In this formulation, the prevalence of technology (ranking 1 − F (z, t)) measures

the level of technological sophistication and determines the difficulty of technology absorption.

I use m(z, x, t) to denote the probability that a firm with productivity x increases its pro-
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ductivity to at least z > x upon a meeting. Then,

m(z, x, t) =

∫ ∞

z

(
1− F (y, t)

1− F (x, t)

)λ f(y, t)

1− F (x, t)
dy =

(1− F (z, t))λ+1

λ+ 1

1

(1− F (x, t))1+λ
. (A.25)

Given search intensity η(x, t), the law of motion on productivity distribution F (z, t) is as follows:

∂F (z, t)

∂t
= − (1− F (z, t))λ+1

∫ z

0

η(x, t)

λ+ 1

f(x, t)

(1− F (x, t))1+λ
dx

It is straightforward to verify that Equation (12) of the baseline model is a special case with

λ = 0. I use tilde to denote the complement CDF, e.g., F̃ (z, t) = 1 − F (z, t). Therefore, the

above equation can be rewritten as:

∂ ln F̃ (z, t)

∂t
= F̃ (z, t)λ

∫ z

0
η(x, t)

F̃ (x, t)−(1+λ)

λ+ 1
f(x, t)dx. (A.26)

C.4.1 Bounded search intensity

Suppose that the initial distribution F (z, 0) has tail index k0, then limz→∞
ln F̃ (z,0)

ln z = −k0.13 If

the search intensity is bounded by a η̄ < ∞, i.e., η(x, t) ≤ η̄, productivity distribution F (z, t)

will always have tail index k0 at all times for all λ > 0. To see this, let T (z, t; η) denote the

right-hand side of (A.26) given an arbitrary path η(x, t). Then,

T (z, t; η) = F̃ (z, t)λ
∫ z

0
η(x, t)

F̃ (x, t)−(1+λ)

λ+ 1
f(x, t)dx

Integrating (A.26) over time gives

ln F̃ (z, t) = ln F̃ (z, 0) +

∫ t

0
T (z, s; η)ds.

Note that for λ > 0,

T (z, t; η) ≤ η̄

λ+ 1
F̃ (z, t)λ

∫ z

0
F̃ (x, t)−(1+λ)f(x, t)dx =

η̄

λ+ 1

1− F̃ (z, t)λ

λ
≤ η̄

λ(λ+ 1)
.

Therefore,
∫ t
0 T (z, s; η)ds ≤

η̄t
λ(λ+1) for all z. Hence, for any t,

lim
z→∞

ln F̃ (z, t)

ln z
= lim

z→∞
ln F̃ (z, 0)

ln z
+ lim
z→∞

∫ t
0 T (z, s; η)ds

ln z
= −k0.

13The Karamata’s theorem (e.g., Theorem 1.5.11 and 1.6.1 of Bingham et al. (1987)) states that

f(x) varies regularly with index −k − 1 if and only if limx→∞
xf(x)

F̃ (x)
= k. Using L’Hospital rule, a

tail index k then implies limx→∞
ln F̃ (x)
ln x = −k. While limx→∞

ln F̃ (x)
ln x = −k does not necessarily imply

limx→∞
xf(x)

F̃ (x)
= k without further smoothness conditions, one can define a weaker version of tail index

k using limx→∞
ln F̃ (x)
ln x = k. I slightly abuse the definition of tail index here and adopt both definitions.
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In other words, the tail index remains the same under bounded search intensity.14

If k0 > 1, it is straightforward to show that the total output, Y (t) =
∫∞
0 zf(z)dz, is always

finite at all times. Using integration by parts, Y (t) =
∫∞
0 [1− F (z, t)] dz. This integral always

converges with a tail index k0 > 1 as a result of the comparison test.

C.4.2 Common search intensity

I intend to compare the evolution of equilibrium productivity distribution between the baseline

and the generalized model. To sharpen the insight, I focus on a similar search strategy as in

the equilibrium of the baseline model.15 In particular, all firms adopt the same search intensity

η(t), which clears the labor market. Substituting η(x, t) = η(t) into (A.26), I obtain that

∂F̃ (z, t)

∂t
=

η(t)

λ+ 1
F̃ (z, t)

[
1− F̃ (z, t)λ

λ

]
. (A.27)

Fixing z, the solution to this differential equation is a generalized logistic function.16 For λ > 0,

the above differential equation admits the following solution given initial distribution F (z, 0)

and a path of η(t):

1− F (z, t) =
{
1 +

[
(1− F (z, 0))−λ − 1

]
e−

1
λ+1

∫ t
0 η(s)ds

}− 1
λ
. (A.28)

Next, I derive the full transition dynamics. Let Z(t) be the aggregate productivity, i.e.,

Z(t) =
∫∞
0 zf(z, t)dz. Differentiating it with respect to t and using (A.27),

Ż(t) =
η(t)

(λ+ 1)λ

{
Z(t)−

∫ ∞

0
(1− F (z, t))λ+1 dz

}
.

Meanwhile, differentiating the labor market clearing condition η(t)Z(t) = L and combining with

the above equation, I obtain that

η̇(t)

η(t)
= − η(t)

(λ+ 1)λ

[
1−

∫∞
0 (1− F (z, t))λ+1 dz∫∞

0 (1− F (z, t)) dz

]
. (A.29)

14It is also useful to see that there will be no jumps in the tail index in a baseline model with bounded
search intensity. When λ = 0,

∂

∂t

ln F̃ (z, t)

ln z
=
T (z, t; η)

ln z
≤ − η̄

λ+ 1

ln F̃ (z, t)

ln z
.

With a finite tail index, the change in the tail index will be bounded, eliminating jumps. Meanwhile, it
differs from the case with λ > 0 where the change in tail index is always zero.

15For a fully developed equilibrium, one needs to solve firms’ HJB equation given the generalized
learning function and to include non-linear search cost, e.g., the adjustment cost in Section B.4. However,
with a Pareto tail, one can show that the expected productivity growth per unit search are asymptotically
constant as z → ∞. Hence, firms have similar incentives to search and choose similar search intensities.
I then consider the path with common search intensity as a proxy for the full equilibrium path.

16It becomes a standard logistic differential equation when λ = 1. Moreover, this PDE coincides with
the evolution of productivity distribution in a standard random search idea flow model, such as that in
Buera and Lucas (2018).
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Given the expression of 1 − F (z, t) in (A.28) and an initial distribution F (z, 0), (A.29) is a

second-order ODE on X(t), where X(t) =
∫ t
0 η(s)ds. The initial conditions are X(0) = 0, and

X ′(0) = η(0) = L/Z(0). It completely characterizes the evolution of the search intensity and

then the productivity distribution.

C.4.3 Numerical comparison

In the section, I show that the generalized model provides good approximation for the evolution

of productivity distribution in the baseline equilibrium when λ is small. Despite that the

mathematical tail index never changes, commonly-used tail index measures will usually vary

along the transition in the generalized model. Thus, I also compare the trajectories of measured

tail indices between the two models.

In practice, I use tail estimator kf as a measured tail index, which uses two size thresholds

(zi) and their respective rankings (1 − F (zi)). I use zx to denote the size thresholds corre-

sponding to the top x% firms. Given a known CDF, I can now fix the rankings and choose the

corresponding thresholds. To align with the tail estimates kf for the U.S., I specifically target

the top 0.5% and 10% firms. The measured tail index then has the following expression:

km = − ln 0.5/10

ln z0.5/z10
(A.30)

For the numerical exercise, I adopt the initial Pareto assumption so that the equilibrium

analysis in Section 4.2 applies directly. Namely, I set F (z, 0) = 1 − z−k0 for z ≥ 1. Given this

setup, it remains to determine appropriate values for the parameters k0 and L. I calibrate the

model to match the U.S. economy from 1978 to 2019. To ensure consistency with the measured

tail index, I use the 1978 estimate of kf for k0, setting k0 = 1.07. Following the approach in

Section 5, I estimate L = 0.02 by regressing ln
(
kf − 1

)
on t (see Figure A.8).17 The labor

market clearing condition implies that η(0) = Lk0−1
k0

= 0.0013.

I then consider a small deviation from the baseline model by setting λ = 10−4. At this

value, the probability for a top 10% firm to adopt the technology of a top 1% will be 99.98%, a

slight deviation from complete certainty. Given the initial conditions, I simulate the respective

economies in both the baseline and generalized models for 400 years. The evolution of produc-

tivity distribution in the baseline model (λ = 0) follows Equation (13) and (16), while it follows

Equation (A.28) and (A.29) in the generalized model (λ = 10−4).

I present the comparison in Figure A.10. The left panel depicts the evolution of the measured

tail index km over 400 years in both models. The trajectories align closely, with km differing

by less than 0.005 after 400 years. The right panel displays the productivity distributions at

year 400. It plots the complementary CDF 1 − F (z, 400) for z ∈ [0.1
− 1

k0 , 0.001
− 1

k0 ]. These

endpoints correspond to the respective productivity thresholds of the top 0.1% and top 10%

17The current value of L is intended to be relatively demanding, as it implies a long-run growth rate
of 2%. The numerical results would be even more compelling if one considers a lower long-run growth
rate, such as the 0.3% suggested by Jones (2022). If L = 0.003, the growth trajectories in Figure A.11
would be nearly identical between the two models. These additional results are available upon request.
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firms in the initial distribution. Notably, even after 400 years, the productivity distributions in

the two models remain virtually indistinguishable.

Figure A.10: Comparing productivity distributions

Notes. The left panel shows the respective time series of measured tail index km, as in (A.30), for the two
models, whereas the right panel displays the complement CDF 1−F (z) of the productivity distributions
in year 400. The red solid line represents the baseline model (λ = 0), and the blue dashed line represents
the generalized model (λ = 10−4). The initial distribution F (z, 0) = 1− z−k0 for z ≥ 1. k0 = 1.07, and
L = 0.02.

Lastly, I compare the dynamics in log output between the two models in Figure A.11.

Unsurprisingly, the generalized model eventually lags behind the baseline model due to the

absence of tail growth. However, the growth trajectories remain closely aligned for the first 150

years.18 This suggests that significant differences between the two models only emerge after 150

years. Therefore, the generalized model provides a reasonable approximation of the baseline

model in terms of output growth over a substantial period.

C.4.4 Jumps in the tail index

Without an upper bound on η(z, t), a social planner can still implement search policies that in-

duce discrete jumps in the tail index, as observed in the baseline model. Following the approach

in Section 6.2, I illustrate changes in the right tail by considering the following approximation of

F̃ (z, t+ h), where h represents an infinitesimal time lapse after implementing the policy η(z, t)

at time t. Using (A.26),

F̃ (z, t+ h) = F̃ (z, t)

[
1 +

h

λ+ 1
F̃ (z, t)λ

∫ z

0
η(x, t)F̃ (x, t)−(λ+1)f(x, t)dx

]
.

Meanwhile, the labor market clearing condition implies that∫ ∞

0
xη(x, t)f(x, t)dx ≤ L.

18The baseline model features asymptotically exponential growth. One can further prove that the
generalized model features asymptotically additive growth.
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Figure A.11: Comparing growth

Notes. This figure compares the time series of log output in the two models. The red solid line represents
the baseline model (λ = 0), and the blue dashed line represents the generalized model (λ = 10−4).
ln y(t) = ln

∫∞
1
zf(z, t)dz. The initial distribution F (z, 0) = 1− z−k0 for z ≥ 1. k0 = 1.07, and L = 0.02.

To obtain a sharper characterization, I restrict the distribution at the time t to be a standard

Pareto distribution, i.e., F (z, t) = 1− z−k with z ≥ 1 and k > 1. I also consider a specific form

of search intensity: η(x, t) = ηtx
p, where ηt is a constant that clear the labor market at time t.

p < k−1 so that the labor market clearing condition is respected. With these functional forms,

F̃ (z, t+ h) =

z
−k
(
1 + hηtk

λ+1

[
zp−z−kλ

p+kλ

])
if p+ kλ ̸= 0,

z−k
(
1 + hηtk

λ+1 ln z
)

if p+ kλ = 0.

It is straightforward that the tail index jumps from k to k−p whenever p > 0. It is then feasible

to thicken the right tail by choosing a p > 0 whenever k > 1, e.g., p = k−1
2 . Hence, the policy

implications in Section 6.2 hold more generally with λ > 0.
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Appendix D Additional results for the extended model

D.1 Equilibrium definitions

Definition (Equilibrium). A competitive equilibrium for the extended economy consists of

wages wr(t) and wp(t), interest rates r(t), firms’ value functions v(z, t), firms’ search intensity

η(z, t) and demand for production labor lp(z, t), households’ income y(t) and consumption c(t),

startup thresholds e∗(t), total output Y (t), the measure of incumbent firms M(t), and the

productivity distribution F (z, t) that satisfy the following:

(i) Given {wp(t), wr(t), r(t), Y (t), F (z, t)}, v(z, t) solves the HJB equation (27) and (28) with

search policy η(z, t), and lp(z, t) is given by (26);

(ii) Given {F (z, t), wr(t), v(z, t)}, e∗(t) solves the entrepreneurial choice problem;

(iii) Given {y(t), r(t)}, c(t) solves the households’ utility maximization problem;

(iv) Goods and labor markets clear;

(v) M(t) solves (33) given entrants E(t) in (30) and M(0). F (z, t) solves the KFE (34) and

(35) given η(z, t) and F (z, 0).

Definition (BGP). An asymptotic balanced growth path (BGP) for the extended economy is

an equilibrium in which output per capita growth converges to a constant g > 0, i.e.,

lim
t→∞

ẏ(t)

y(t)
= g > 0.

D.2 Proof of Proposition 4

Proof. I guess and verify that η(z, t) = η(t) for z ≥ z∗(t) is an equilibrium search strategy. Let

Q(r, t) be as follows:

1−Q(r, t) =
1− F (rz∗(t), t)
1− F (z∗(t), t)

, r ≥ 1.

Namely, 1−Q(r, t) is the fraction of firms with productivity at least r times the current obso-

lescence threshold z∗(t). For z ≥ z∗(t)

1− F (z, t) =

(
1−Q

(
z

z∗(t)
, t

))
(1− F ∗(t)) (A.31)

Then,

∂ ln (1− F (z, t))

∂t
= − ∂

∂r
ln

(
1−Q

(
z

z∗(t)
, t

))
z

z∗(t)
gz(t) +

∂

∂t
ln

(
1−Q

(
z

z∗(t)
, t

))
+

d ln (1− F ∗(t))

dt
.
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Noticing that

d ln (1− F ∗(t))
dt

=
∂ ln (1− F (z∗(t), t))

∂z
z∗(t)gz(t) +

∂ ln (1− F (z∗(t), t))
∂t

and

∂ ln (1− F (z, t))

∂z
=

∂

∂r
ln

(
1−Q

(
z

z∗(t)
, t

))
1

z∗(t)
,

then

d ln (1− F ∗(t))
dt

=
∂ ln (1−Q (1, t))

∂r
gz(t) +

∂ ln (1− F (z∗(t), t))
∂t

(A.32)

Rearranging terms and using r = z/z∗(t)

∂ ln (1−Q(r, t))

∂t
=
∂ ln (1−Q(r, t))

∂r
rgz(t) +

∂ ln (1− F (z, t))

∂t
− ∂ ln (1− F (z∗(t), t))

∂t
− ∂ ln (1−Q (1, t))

∂r
gz(t),

=

[
∂ ln (1−Q(r, t))

∂r
r − ∂ ln (1−Q (1, t))

∂r

]
gz(t)− η(t) ln

1− F (z, t)

1− F (z∗(t), t)
,

=

[
∂ ln (1−Q(r, t))

∂r
r − ∂ ln (1−Q (1, t))

∂r

]
gz(t)− η(t) ln (1−Q(r, t)) .

The second equality comes from (35). It is straightforward to verify that Q(r, t) = 1 − r−k(t)

and k̇(t) = −η(t)k(t) satisfy the above the partial differential equation and the initial condition

F (z, 0) = Q(z, 0). In other words, the productivity distribution in the baseline economy is

the relative productivity distribution among search active firms in the extended economy. The

baseline model is a special case in which no technology becomes obsolete. Consequently, I have

shown that F (z, t) is given by (A.31) for z ≥ z∗(t).

With the linearity of π(z, t) on z in HJB equations (27) and (28), same arguments in Section

4.2 lead to that v(z, t) = v(t)z. As Q(r, t) is always Pareto, it is straightforward to verify that

the net payoff per idea search S(z, t) is zero if wr(t) =
v(t)

ψ(k(t)−1) . Namely,

∫ ∞

z
[v(x, t)− v(z, t)]dF (x|x ≥ z, t)− zψwr(t) = z

[
v(t)

k(t)− 1
− ψwr(t)

]
= 0.

I then verify that η(z, t) = η(t) is an equilibrium strategy. The market clearing condition for

researchers implies that η(t) > 0.

Using ∂ ln(1−Q(r,t))
∂r = −k(t)

r , I obtain the law of motion on F ∗(t) from (A.32) and (35):

d ln (1− F ∗(t))
dt

= −k(t)gz(t) + gE(t)
F ∗(t)

1− F ∗(t)
.

Finally, the left tail is derived directly by integrating the KFE (34) for the search-inactive

firms over time t from the stopping time T ∗(z) to the current time:

lnF (z, t)− lnF (z, T ∗(z)) = −
∫ t

T ∗(z)
gE(s)ds.
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I then obtain (36) using F ∗(T ∗(z)) = F (z, T ∗(z)). The proof is then complete. ■

D.3 Proof of Proposition 5

Proof. As discussed in the main text, the law of motion for M(t) follow directly from Equation

(33) and the law of motion for F ∗(t) from Proposition 4. The expression for gE(t) follows the

definition of entry rate and the measure of entrants in (30). It suffices to derive the law of

motion for k(t) and the equilibrium startup threshold e∗(t).

First, I derive the ODE for k(t). Given F (z, t) in (36), the market clearing condition (32)

for researchers implies that

ψM(t)η(t) [1− F ∗(t)]
k(t)

k(t)− 1
z∗(t) = sJ(e∗(t))L(t). (A.33)

Combining it with k̇(t)/k(t) = −η(t), I obtain that the ODE (39) for k(t):

− k̇(t)

k(t)− 1
=
sJ(e∗(t))
1− F ∗(t)

L(t)

ψM(t)z∗(t)
=
J(e∗(t))
K(e∗(t))

gE(t)

1− F ∗(t)
.

I further define gTG(t) ≡ −k̇(t)/(k(t)− 1).

Next, I derive the equilibrium startup threshold e∗(t). As shown in the previous proof of

Proposition 4 in Section D.2, the equilibrium researchers’ wage wr(t) =
v(t)

ψ(k(t)−1) . Since J has

support [0,+∞), (29) implies that e∗(t) is always interior so that vE(e
∗(t), t) = (1 − τr)wr(t).

Substituting (29), (36), and the expression for wr(t) into this equation, I obtain the following

expression for e∗(t):

e∗(t) =
1− τr
k(t)

. (A.34)

The proof is then complete. ■

D.4 Proof of Proposition 6

Proof. This proof consists of three steps. First, I derive the limits k∗, e∗, f , g∗M , and g∗TG. Then,

I show that F (z, t) is an asymptotic traveling wave. Finally, I obtain the long-run growth rates

of Z(t) and y(t).

Step 1: Limits k∗, e∗, f , g∗M , and g∗TG I start with g∗M . Proposition 4 indicates that

k(t) is decreasing and bounded from zero, it then converges to a limit k∗ ≥ 0. Furthermore,

ODE (39) ensures that k(t) ≥ 1 since k(0) > 1, and the RHS of (39) is positive. Then, k∗ ≥ 1.

Solving ODE (37) with e∗(t) → e∗ = (1− τr)/k
∗ ∈ ((1− τr)/k0, 1− τr) and the assumptions on

gL(t) and gz(t), I obtain that

g∗M ≡ lim
t→∞

gM (t) = g∗L − g∗z , and lim
t→∞

L(t)

ψM(t)z∗(t)
=
g∗L − g∗z + δ

sK(e∗)
.
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Next, solving (38) given k(t), gz(t), and gE(t) gives that F ∗(t) converges to the following

stationary point f :

f ≡ lim
t→∞

F ∗(t) =
k∗g∗z

k∗g∗z + g∗E
, (A.35)

where g∗E = g∗M + δ = g∗L − g∗z + δ > 0.

To obtain k∗, notice that the ODE (39) on gTG(t) implies that

lim
t→∞

− k̇(t)

k(t)− 1
= lim

t→∞
sJ(e∗(t))
1− F ∗(t)

lim
t→∞

L(t)

ψM(t)z∗(t)

=
sJ(e∗))
1− f

g∗L − g∗z + δ

sK(e∗)

=
J(e∗)
K(e∗)

(k∗g∗z + g∗E),

where I use 1− f =
g∗E

k∗g∗z+g
∗
E
. Since k∗ ≥ 1 and g∗z > 0, k∗g∗z + g∗E > 0. Then, k(t)− 1 decreases

to 0 at an asymptotically constant and positive rate. Consequently,

k∗ = 1, e∗ = 1− τr, f =
g∗z

g∗L + δ
, and g∗TG =

J(e∗)
K(e∗)

(g∗L + δ).

Step 2: Asymptotic traveling wave I define Ql(r, t) and Qr(r, t) as follows:

Ql(r, t) =
F (rz∗(t), t)
F (z∗(t), t)

, and 1−Qr(r, t) =
1− F (rz∗(t), t)
1− F (z∗(t), t)

.

Namely, Ql for r ∈ (0, 1) and Qr for r ≥ 1 are the respective distributions for search-active and

search-inactive firms. The following lemma characterizes their limiting distributions.

Lemma A.4. With limt→∞ gL(t) = g∗L, limt→∞ gz(t) = g∗z > 0, and g∗L + δ > g∗z ,

lim
t→∞

Ql(r, t) = rς for r ∈ (0, 1), (A.36)

lim
t→∞

Qr(r, t) = 1− r−1 for r ≥ 1, (A.37)

where ς =
g∗E
g∗z
.

Proof. It is evident that (A.37) follows directly from Proposition 4 and k∗ = 1. Meanwhile,

Proposition 4 also implies that19

Ql(r, t) =
F ∗(T ∗(rz∗(t)))
F ∗(T ∗(z))

e
−

∫ t
T∗(rz∗(t)) gE(s)ds

=
F ∗(T ∗(rz∗(t)))
F ∗(T ∗(z))

e
−

∫ T∗(z∗(t))
T∗(rz∗(t)) gE(s)ds

,

where the last equality uses that t = T ∗(z∗(t)). Since g∗z > 0, z∗(t) → ∞ as t→ ∞. T ∗(rz∗(t))

19Technically, the lower support of Ql(r, t) is 1
z∗(t) . However, for any r ∈ (0, 1), there exists T such

that r is in the support of Ql(r, t) if t > T .
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also goes to infinity since rz∗(t) → ∞. Consequently,

lim
t→∞

F ∗(T ∗(rz∗(t))) = lim
t→∞

F ∗(T ∗(z∗(t))) = lim
t→∞

F ∗(t) = f.

On the other hand, the mean value theorem implies that∫ T ∗(z∗(t))

T ∗(rz∗(t))
gE(s)ds =

∫ T ∗(z∗(t))

T ∗(rz∗(t))

gE(s)

gz(s)
gz(s)ds =

gE(t̃)

gz(t̃)

∫ T ∗(z∗(t))

T ∗(rz∗(t))
gz(s)ds

for some t̃ ∈ (T ∗(rz∗(t)), T ∗(z∗(t))). MVT applies since gE and gz are both positive and

continuous and T ∗ is monotonic. Hence,

e
−

∫ T∗(z∗(t))
T∗(rz∗(t)) gE(s)ds

=

(
e
∫ T∗(z∗(t))
T∗(rz∗(t)) gz(s)ds

)− gE(t̃)

gz(t̃)

=

(
e
∫ T∗(z∗(t))
0 gz(s)ds

e
∫ T∗(rz∗(t))
0 gz(s)ds

)− gE(t̃)

gz(t̃)

= r
gE(t̃)

gz(t̃) ,

where the last equality follows that z = e
∫ T∗(z)
0 gz(s)ds. Moreover, t̃→ ∞ as both T ∗(rz∗(t)) and

T ∗(z∗(t)) go to infinity. Then, gE(t̃)

gz(t̃)
→ ς ≡ g∗E

g∗z
with g∗E > 0. In sum,

lim
t→∞

Ql(r, t) =
limt→∞ F ∗(T ∗(rz∗(t)))

limt→∞ F ∗(T ∗(z))
lim
t→∞

e
−

∫ T∗(z∗(t))
T∗(rz∗(t)) gE(s)ds

= rς .

■

Given the limiting distributions of Ql and Qr, it is straightforward that F (z, t) is a traveling

wave with velocity z∗(t) and takes a limiting distribution Γ in (41).

Step 3: Long-run growth rates of Z(t) and y(t) I first characterize the growth in

Z(t). Note that

Z(t) =

∫ z∗(t)

1
zdF (z, t) +

∫ ∞

z∗(t)
zdF (z, t)

=z∗(t)F (z∗(t), t)−
∫ z∗(t)

1
F (z, t)dz + z∗(t) [1− F (z∗(t), t)] +

∫ ∞

z∗(t)
[1− F (z, t)] dz

=z∗(t)−
∫ z∗(t)

1
F (z, t)dz +

∫ ∞

z∗(t)
[1− F (z, t)] dz

Using z = rz∗(t) for substitution,∫ z∗(t)

1
F (z, t)dz = z∗(t)

∫ 1

1
z∗(t)

F (rz∗(t), t)dr

Since limt→∞ F (rz∗(t), t) = frς , dominated convergence theorem implies that

lim
t→∞

∫ 1

1
z∗(t)

F (rz∗(t), t)dr =
∫ 1

0
frςdr =

f

ς + 1
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On the other hand, Proposition 4 implies that∫ ∞

z∗(t)
[1− F (z, t)] dz = [1− F ∗(t)]

z∗(t)
k(t)− 1

Combining all these terms,

Z(t)

z∗(t)
= 1−

∫ 1

1
z∗(t)

F (rz∗(t), t)dr +
1− F ∗(t)
k(t)− 1

∼ 1− f

ς + 1
+

1− f

k(t)− 1
∼ 1− f

k(t)− 1

as t = ∞.20 So Z(t)/z∗(t) behaves like 1/(k(t)− 1) as t→ ∞. To formally establish the growth

rate gZ ≡ Ż(t)/Z(t), I note that

d

dt

Z(t)

z∗(t)
= −

∫ 1

1
z∗(t)

dF (rz∗(t), t)
dt

dr − dF ∗(t)
k(t)− 1

− [1− F ∗(t)] k̇(t)

(k(t)− 1)2

I show that the first term vanishes since d
dt

dF (rz∗(t),t)
dt → 0 as t → ∞. To see this, totally

differentiating F (rz∗(t), t) in (36) with respect to t gives us

dF (rz∗(t), t)
dt

= (F ∗)′ (T ∗(rz∗(t))) (T ∗)′(rz∗(t))r(z∗)′(t)e−
∫ t
T∗(rz∗(t)) gE(s)ds

+F ∗ (T ∗ (rz∗(t))) e−
∫ t
T∗(rz∗(t)) gE(s)ds [−gE(t) + gE (T ∗(rz∗(t))) (T ∗)′(rz∗(t))r(z∗)′(t)

]
To simplify the above derivative, I first obtain the following by totally differentaiting z =

e
∫ T∗(z)
0 gz(s)ds w.r.t. z:

1 = zgz(T
∗(z))(T ∗)′(z). (A.38)

Then,

(T ∗)′(rz∗(t))r(z∗)′(t) =
r(z∗)′(t)

rz∗(t)gz(T ∗(rz∗(t)))
=

gz(t)

gz(T ∗(rz∗(t)))
=

gz(T
∗(z∗(t)))

gz(T ∗(rz∗(t)))
→ 1,

where the second equality uses (A.38), the third the definition of gz(t), and the fourth t =

T ∗(z∗(t)). The ratio converges to 1 since gz(t) → g∗z . The convergence of gz(t) also implies that

0 < inft gz(t) ≤ supt gz(t) <∞.21 Therefore, gz(T ∗(z∗(t)))
gz(T ∗(rz∗(t))) is bounded for any r and t.

Let A(t) = e
−

∫ t
T∗(rz∗(t)) gE(s)ds

< 1. I have shown in the previous step that limt→∞A(t) = rς .

Also, let B(t) = (T ∗)′(rz∗(t))r(z∗)′(t), so limt→∞B(t) = 1. Then,

dF (rz∗(t), t)
dt

= (F ∗)′ (T ∗(rz∗(t)))B(t)A(t) + F ∗ (T ∗ (rz∗(t)))A(t) [−gE(t) + gE (T ∗(rz∗(t)))B(t)] .

Using that limt→∞(F ∗)′(t) = 0, limt→∞(F ∗)(t) = f , limt→∞ gE(t) = g∗E ,
dF (rz∗(t),t)

dt is bounded

20To show that Z(t)/z∗(t) has asymptotic growth rate gTG(t), I need to verify first that the derivative
of the constant part (the left tail) is well behaved so that limt→∞ Ż(t) is well defined.

21The lower bound holds since gz(t) is continous, and gz(t) > 0, which follows from the assumed
differentiability of T ∗(z).
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and converges to

lim
t→∞

dF (rz∗(t), t)
dt

= 0× 1× rς + f × rς × [−g∗E + g∗E × 1] = 0.

The dominated convergence theorem then applies to show that
∫ 1

1
z∗(t)

dF (rz∗(t),t)
dt dr → 0.

From here,

d
dtZ(t)/z

∗(t)
Z(t)/z∗(t)

∼
− (F ∗)′(t)

k(t)−1 − [1−F ∗(t)]k̇(t)
(k(t)−1)2

1− f
ς+1 + 1−f

k(t)−1

∼ −(F ∗)′(t)
1− f

− k̇(t)

k(t)− 1
∼ gTG(t)

at t = ∞. Then,

lim
z→∞

Ż(t)

Z(t)
− gz(t) = g∗TG.

Lastly, I derive the growth rate of household income g(t). Notice that

Y (t) =M(t)

∫ ∞

1
r(z, t)dF (z, t) =M(t)Y (t)

(
σ

σ − 1
wp(t)

)1−σ
Z(t)

⇒ M(t)Z(t) =

(
σ

σ − 1
wp(t)

)σ−1

⇒ wp(t) =
σ − 1

σ
(M(t)Z(t))

1
σ−1 .

The first line follows from firms’ static choices in (26). Firms’ pricing rule also implies that
σ−1
σ Y (t) = wp(t)(1− s)L(t). Then, households’ income or output per capita is

y(t) =
Y (t)

L(t)
=

σ

σ − 1

wp(t)(1− s)L(t)

L(t)
=
σ(1− s)

σ − 1
wp(t) = (1− s) (M(t)Z(t))

1
σ−1 .

Given that limt→∞
Ż(t)
Z(t) = g∗z + g∗TG, and g

∗
M = g∗L − g∗z ,

g∗ = g∗wp
≡ lim

t→∞
ẇp(t)

wp(t)
=
g∗TG + g∗L
σ − 1

.

In addition, given that M(t) ∼ L(t)
ψz∗(t)

sK(e∗)
g∗L−g∗z+δ

and Z(t)
z∗(t) ∼ 1− f

ς+1 + 1−f
k(t)−1 ,

y(t) ∼ (1− s)

(
sK(e∗)L(t)

ψ
(
g∗L − g∗z + δ

) ((1− f)
k(t)

k(t)− 1
+

ς

ς + 1
f

)) 1
σ−1

.

■
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